Microstructure and corrosion behavior of Ti–10Mo–6Zr–4Sn–3 Nb (Ti-B12) alloys as biomedical material in lactic acid-containing Hank's solution

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
Xiangmei Wen , Shuai Hao , Suwan Liu , Jun Cheng , Yixuan He , Liang-Yu Chen
{"title":"Microstructure and corrosion behavior of Ti–10Mo–6Zr–4Sn–3 Nb (Ti-B12) alloys as biomedical material in lactic acid-containing Hank's solution","authors":"Xiangmei Wen ,&nbsp;Shuai Hao ,&nbsp;Suwan Liu ,&nbsp;Jun Cheng ,&nbsp;Yixuan He ,&nbsp;Liang-Yu Chen","doi":"10.1016/j.ijoes.2025.100974","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the growing interest in Ti and its alloys in the biomedical field, Ti–10Mo–6Zr–4Sn–3 Nb (Ti-B12) alloys have promising potential for orthopedic applications. However, although much work is related to the microstructures and mechanical properties of Ti-B12 alloys, their corrosion behavior, especially in the solution containing lactic acid, is still unclear. This work investigated the microstructures and electrochemical corrosion behavior of Ti-B12 alloys in Hank's solution with varying lactic acid concentrations. As-cast, deformed, and annealed Ti-B12 alloys were used as the samples. The results show that lactic acid plays a detrimental role in the corrosion resistance of the alloys. When the lactic acid concentration of Hank's solution is 0.075 wt% (pH = 3), the Ti-B12 alloys exhibit the highest corrosion current densities of 0.055 μA·cm<sup>−2</sup>, 0.078 μA·cm<sup>−2</sup>, and 0.098 μA·cm<sup>−2</sup>, for the annealed, as-cast and deformed samples, respectively. Correspondingly, in such a situation, the impedances of the passive films formed after open circuit potential are 1.46 MΩ·cm<sup>2</sup>, 1.28 MΩ·cm<sup>2,</sup> and 0.95 MΩ·cm<sup>2</sup>, which is about two-thirds of those in the Hank's solution with pH of 7. The lactic acid dissolves the outer layer of the passive film, resulting in an increased density of oxygen vacancies. The annealed sample exhibits refined grains in the microstructure, crucial for enhancing corrosion resistance. The as-cast samples display coarser grains. The grains are broken and elongated in the rolling direction in the deformed sample, leading to inferior performance in corrosive environments. This research provides critical insights into the potential applications of Ti-B12 alloys in biomedical environments.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 4","pages":"Article 100974"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000495","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the growing interest in Ti and its alloys in the biomedical field, Ti–10Mo–6Zr–4Sn–3 Nb (Ti-B12) alloys have promising potential for orthopedic applications. However, although much work is related to the microstructures and mechanical properties of Ti-B12 alloys, their corrosion behavior, especially in the solution containing lactic acid, is still unclear. This work investigated the microstructures and electrochemical corrosion behavior of Ti-B12 alloys in Hank's solution with varying lactic acid concentrations. As-cast, deformed, and annealed Ti-B12 alloys were used as the samples. The results show that lactic acid plays a detrimental role in the corrosion resistance of the alloys. When the lactic acid concentration of Hank's solution is 0.075 wt% (pH = 3), the Ti-B12 alloys exhibit the highest corrosion current densities of 0.055 μA·cm−2, 0.078 μA·cm−2, and 0.098 μA·cm−2, for the annealed, as-cast and deformed samples, respectively. Correspondingly, in such a situation, the impedances of the passive films formed after open circuit potential are 1.46 MΩ·cm2, 1.28 MΩ·cm2, and 0.95 MΩ·cm2, which is about two-thirds of those in the Hank's solution with pH of 7. The lactic acid dissolves the outer layer of the passive film, resulting in an increased density of oxygen vacancies. The annealed sample exhibits refined grains in the microstructure, crucial for enhancing corrosion resistance. The as-cast samples display coarser grains. The grains are broken and elongated in the rolling direction in the deformed sample, leading to inferior performance in corrosive environments. This research provides critical insights into the potential applications of Ti-B12 alloys in biomedical environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信