{"title":"Numerical simulation of the external acoustic field characteristics of gas pipeline leakage","authors":"Shenglin Diao, Wenjun Wu, Ben Zhang, Li Wang","doi":"10.1016/j.flowmeasinst.2025.102853","DOIUrl":null,"url":null,"abstract":"<div><div>The external acoustic field characteristics of leakage from pipelines are crucial in assessing the feasibility of non-contact acoustic methods for pipeline leakage detection. This study explores the characteristics of such leakage in gas pipelines by coupling Computational Fluid Dynamics (CFD) flow field calculations with the acoustic software ACTRAN. Large Eddy Simulation (LES) was first employed to calculate the unsteady flow field during a leak of gas pipelines. To account for the high Mach number associated with gas pipeline leakage, the Möhring acoustic analogy method was employed to extract the aerodynamic noise source. This approach utilized time-averaged flow velocity data from the unsteady flow field as the background flow. The study further examined the characteristics of the external leakage sound source under varying fluid pressure conditions. Additionally, the near-field and far-field propagation characteristics of the sound source were analyzed using a combination of acoustic finite element and infinite element methods. The results demonstrate that a high-velocity jet region forms at the outlet of the leakage hole during a gas pipeline leak, generating a leakage sound source predominantly characterized by a quadrupole sound source. The peak sound pressure level of the leakage noise is primarily concentrated in the low-frequency range. While the pressure differential between the inside and outside of the pipeline influences the intensity of the sound source within the jet region, it does not significantly affect the frequency characteristics of the sound source. The strong sound source distribution largely coincides with the jet region, and the propagation of the leakage sound source along the jet direction is symmetric, with this symmetry maintained across varying distances.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"103 ","pages":"Article 102853"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598625000457","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The external acoustic field characteristics of leakage from pipelines are crucial in assessing the feasibility of non-contact acoustic methods for pipeline leakage detection. This study explores the characteristics of such leakage in gas pipelines by coupling Computational Fluid Dynamics (CFD) flow field calculations with the acoustic software ACTRAN. Large Eddy Simulation (LES) was first employed to calculate the unsteady flow field during a leak of gas pipelines. To account for the high Mach number associated with gas pipeline leakage, the Möhring acoustic analogy method was employed to extract the aerodynamic noise source. This approach utilized time-averaged flow velocity data from the unsteady flow field as the background flow. The study further examined the characteristics of the external leakage sound source under varying fluid pressure conditions. Additionally, the near-field and far-field propagation characteristics of the sound source were analyzed using a combination of acoustic finite element and infinite element methods. The results demonstrate that a high-velocity jet region forms at the outlet of the leakage hole during a gas pipeline leak, generating a leakage sound source predominantly characterized by a quadrupole sound source. The peak sound pressure level of the leakage noise is primarily concentrated in the low-frequency range. While the pressure differential between the inside and outside of the pipeline influences the intensity of the sound source within the jet region, it does not significantly affect the frequency characteristics of the sound source. The strong sound source distribution largely coincides with the jet region, and the propagation of the leakage sound source along the jet direction is symmetric, with this symmetry maintained across varying distances.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.