Spray freeze-drying for inhalable L-leucine, mannitol-based microparticles: The impact of process variables, L-leucine, and crystallinity on Aerosolization properties
{"title":"Spray freeze-drying for inhalable L-leucine, mannitol-based microparticles: The impact of process variables, L-leucine, and crystallinity on Aerosolization properties","authors":"Lorena Pasero , Adamo Sulpizi , Tomaso Guidi , Roberto Pisano","doi":"10.1016/j.powtec.2025.120788","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, microparticles carrying salbutamol sulphate were produced by pneumatic spray freeze-drying. The optimal particle size was assessed through a model, associated with a design of experiments. Growing solid concentrations and <span><math><msub><mi>N</mi><mn>2</mn></msub></math></span> flow rate led to decreasing geometric diameters, while an opposite effect was associated with the feed flow rate. The aerodynamic diameter, instead, increased at increasing solid concentrations. Moreover, the role of crystallinity in determining the microparticles' flowability was evaluated upon the incorporation of L-leucine. The addition of the amino acid induced the formation of two morphologies with different degrees of crystallinity. The absence of recrystallization significantly improved the aerosolization properties of the microparticles up to a maximum fine particle fraction (48 %) and a minimum mass median aerodynamic diameter (2 μm) at 10 % (<em>w/w</em> db) L-leucine. This result disclosed the influence of polymorphism on the microparticles' cohesiveness, proving the dependency of the microparticles' aerodynamics on L-leucine and mannitol crystallinity.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"455 ","pages":"Article 120788"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025001834","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, microparticles carrying salbutamol sulphate were produced by pneumatic spray freeze-drying. The optimal particle size was assessed through a model, associated with a design of experiments. Growing solid concentrations and flow rate led to decreasing geometric diameters, while an opposite effect was associated with the feed flow rate. The aerodynamic diameter, instead, increased at increasing solid concentrations. Moreover, the role of crystallinity in determining the microparticles' flowability was evaluated upon the incorporation of L-leucine. The addition of the amino acid induced the formation of two morphologies with different degrees of crystallinity. The absence of recrystallization significantly improved the aerosolization properties of the microparticles up to a maximum fine particle fraction (48 %) and a minimum mass median aerodynamic diameter (2 μm) at 10 % (w/w db) L-leucine. This result disclosed the influence of polymorphism on the microparticles' cohesiveness, proving the dependency of the microparticles' aerodynamics on L-leucine and mannitol crystallinity.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.