Correction to “Recombinant Spike protein vaccines coupled with adjuvants that have different modes of action induce protective immunity against SARS-CoV-2” [Vaccine 2023 Sep 22 41(41) 6025–6035. Doi: 10.1016/j.vaccine.2023.08.054]

IF 4.5 3区 医学 Q2 IMMUNOLOGY
Shiho Chiba , Peter J. Halfmann , Shun Iida , Yuichiro Hirata , Yuko Sato , Makoto Kuroda , Tammy Armbrust , Samuel Spyra , Tadaki Suzuki , Yoshihiro Kawaoka
{"title":"Correction to “Recombinant Spike protein vaccines coupled with adjuvants that have different modes of action induce protective immunity against SARS-CoV-2” [Vaccine 2023 Sep 22 41(41) 6025–6035. Doi: 10.1016/j.vaccine.2023.08.054]","authors":"Shiho Chiba ,&nbsp;Peter J. Halfmann ,&nbsp;Shun Iida ,&nbsp;Yuichiro Hirata ,&nbsp;Yuko Sato ,&nbsp;Makoto Kuroda ,&nbsp;Tammy Armbrust ,&nbsp;Samuel Spyra ,&nbsp;Tadaki Suzuki ,&nbsp;Yoshihiro Kawaoka","doi":"10.1016/j.vaccine.2025.126880","DOIUrl":null,"url":null,"abstract":"<div><div>In the previously published version of the paper, the term “AS03” was used to describe the AddaS03 adjuvant used in animal experiments. This could lead to confusion among the trade and public as to a connection between the AddaS03 adjuvant and GSK's AS03. Upon request by GSK, the authors clarify that no AS03 from GSK was used in this study, and the results obtained with AddaS03 are not transposable to the GSK's AS03 adjuvant. The article has now been corrected, and the conclusions of this paper remain unchanged.</div><div>Corrections highlighted in bold.</div><div>The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a glycoprotein, expressed on the virion surface, that mediates infection of host cells by directly interacting with host receptors. As such, it is a reasonable target to neutralize the infectivity of the virus. Here we found that a recombinant S protein vaccine adjuvanted with Alhydrogel or the QS-21-like adjuvant Quil-A effectively induced anti-S receptor binding domain (RBD) serum IgG and neutralizing antibody titers in the Syrian hamster model, resulting in significantly low SARS-CoV-2 replication in respiratory organs and reduced body weight loss upon virus challenge. Severe lung inflammation upon virus challenge was also strongly suppressed by vaccination. We also found that the S protein vaccine adjuvanted with Alhydrogel, Quil-A, or <strong>AddaS03</strong> elicited significantly higher neutralizing antibody titers in mice than did unadjuvanted vaccine. Although the neutralizing antibody titers against the variant viruses B.1.351 and B.1.617.2 declined markedly in mice immunized with wild-type S protein, the binding antibody levels against the variant S proteins were equivalent to those against wild-type S. When splenocytes from the immunized mice were re-stimulated with the S protein in vitro, the induced Th1 or Th2 cytokine levels were not significantly different upon re-stimulation with wild-type S or variant S, suggesting that the T-cell responses against the variants were the same as those against the wild-type virus. Upon Omicron XBB-challenge in hamsters, wild-type S-vaccination with Alhydrogel or <strong>AddaS03</strong> reduced lung virus titers on Day 3, and the Quil-A adjuvanted group showed less body weight loss, although serum neutralizing antibody titers against XBB were barely detected in vitro. Collectively, recombinant vaccines coupled with different adjuvants may be promising modalities to combat new variant viruses by inducing various arms of the immune response.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"52 ","pages":"Article 126880"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X2500177X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the previously published version of the paper, the term “AS03” was used to describe the AddaS03 adjuvant used in animal experiments. This could lead to confusion among the trade and public as to a connection between the AddaS03 adjuvant and GSK's AS03. Upon request by GSK, the authors clarify that no AS03 from GSK was used in this study, and the results obtained with AddaS03 are not transposable to the GSK's AS03 adjuvant. The article has now been corrected, and the conclusions of this paper remain unchanged.
Corrections highlighted in bold.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a glycoprotein, expressed on the virion surface, that mediates infection of host cells by directly interacting with host receptors. As such, it is a reasonable target to neutralize the infectivity of the virus. Here we found that a recombinant S protein vaccine adjuvanted with Alhydrogel or the QS-21-like adjuvant Quil-A effectively induced anti-S receptor binding domain (RBD) serum IgG and neutralizing antibody titers in the Syrian hamster model, resulting in significantly low SARS-CoV-2 replication in respiratory organs and reduced body weight loss upon virus challenge. Severe lung inflammation upon virus challenge was also strongly suppressed by vaccination. We also found that the S protein vaccine adjuvanted with Alhydrogel, Quil-A, or AddaS03 elicited significantly higher neutralizing antibody titers in mice than did unadjuvanted vaccine. Although the neutralizing antibody titers against the variant viruses B.1.351 and B.1.617.2 declined markedly in mice immunized with wild-type S protein, the binding antibody levels against the variant S proteins were equivalent to those against wild-type S. When splenocytes from the immunized mice were re-stimulated with the S protein in vitro, the induced Th1 or Th2 cytokine levels were not significantly different upon re-stimulation with wild-type S or variant S, suggesting that the T-cell responses against the variants were the same as those against the wild-type virus. Upon Omicron XBB-challenge in hamsters, wild-type S-vaccination with Alhydrogel or AddaS03 reduced lung virus titers on Day 3, and the Quil-A adjuvanted group showed less body weight loss, although serum neutralizing antibody titers against XBB were barely detected in vitro. Collectively, recombinant vaccines coupled with different adjuvants may be promising modalities to combat new variant viruses by inducing various arms of the immune response.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vaccine
Vaccine 医学-免疫学
CiteScore
8.70
自引率
5.50%
发文量
992
审稿时长
131 days
期刊介绍: Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信