FedWDP: A Wasserstein-distance-based federated learning for privacy and heterogeneous data in IoT

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinlong Bai, Lifeng Cao, Jinhui Li, Jiling Wan, Xuehui Du
{"title":"FedWDP: A Wasserstein-distance-based federated learning for privacy and heterogeneous data in IoT","authors":"Jinlong Bai,&nbsp;Lifeng Cao,&nbsp;Jinhui Li,&nbsp;Jiling Wan,&nbsp;Xuehui Du","doi":"10.1016/j.iot.2025.101532","DOIUrl":null,"url":null,"abstract":"<div><div>As the need for interconnected devices and data exchange grows in the Internet of Things (IoT), traditional centralized data processing methods increasingly struggle to maintain privacy and adapt to the diverse and dispersed nature of IoT devices. Federated learning, a decentralized approach to machine learning, presents a viable solution to these challenges. Yet, the varied nature of IoT data and stringent privacy requirements introduce unique obstacles for federated learning. This paper introduces FedWDP, a federated learning method specifically designed for IoT privacy needs and heterogeneous data. FedWDP uses the Wasserstein distance to quantify the gap between local and global parameters, integrating this measure as a regularization term in the loss function to reduce model discrepancies and improve accuracy. To further balance privacy and usability, an exponential decay strategy is implemented, allowing for adaptive distribution of differential privacy noise. For better performance on high-dimensional data, PCA-FedWDP is proposed, which combines principal component analysis (PCA) with differentially private federated learning to perform dimensionality reduction. Experimental results on non-IID datasets reveal that this approach significantly enhances both accuracy and availability for heterogeneous data while safeguarding user privacy. This study thus provides a valuable framework for applying federated learning in IoT settings, contributing to the secure and intelligent use of IoT data in both theoretical and practical contexts.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101532"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000459","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the need for interconnected devices and data exchange grows in the Internet of Things (IoT), traditional centralized data processing methods increasingly struggle to maintain privacy and adapt to the diverse and dispersed nature of IoT devices. Federated learning, a decentralized approach to machine learning, presents a viable solution to these challenges. Yet, the varied nature of IoT data and stringent privacy requirements introduce unique obstacles for federated learning. This paper introduces FedWDP, a federated learning method specifically designed for IoT privacy needs and heterogeneous data. FedWDP uses the Wasserstein distance to quantify the gap between local and global parameters, integrating this measure as a regularization term in the loss function to reduce model discrepancies and improve accuracy. To further balance privacy and usability, an exponential decay strategy is implemented, allowing for adaptive distribution of differential privacy noise. For better performance on high-dimensional data, PCA-FedWDP is proposed, which combines principal component analysis (PCA) with differentially private federated learning to perform dimensionality reduction. Experimental results on non-IID datasets reveal that this approach significantly enhances both accuracy and availability for heterogeneous data while safeguarding user privacy. This study thus provides a valuable framework for applying federated learning in IoT settings, contributing to the secure and intelligent use of IoT data in both theoretical and practical contexts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信