Alejandro Arias-Jimenez , Jorge Gallego-Madrid , Jesus Sanchez-Gomez , Rafael Marin-Perez
{"title":"Lightweight authenticated key exchange for low-power IoT networks using EDHOC","authors":"Alejandro Arias-Jimenez , Jorge Gallego-Madrid , Jesus Sanchez-Gomez , Rafael Marin-Perez","doi":"10.1016/j.iot.2025.101539","DOIUrl":null,"url":null,"abstract":"<div><div>Energy efficiency is crucial for battery-powered devices in constrained networks, especially in Smart Agriculture and Smart Cities scenarios. To maximize battery life and ensure secure communications, lightweight key exchange protocols like Ephemeral Diffie–Hellman Over COSE (EDHOC) are essential. To further optimize energy efficiency, EDHOC can be combined with the Static Context Header Compression (SCHC) protocol, which is designed to compress and fragment data packets. This work demonstrates that EDHOC and SCHC can be successfully integrated to establish secure session keys in Internet of Things (IoT) scenarios. The attained results showcase that security mechanisms can be implemented in resource-limited devices with minimal energy impact, extending battery life. The experiments showed it is possible to compress the EDHOC exchange messages up to a <span><math><mo>∼</mo></math></span>54% and to reduce the energy consumption by a <span><math><mo>∼</mo></math></span>20%, while maintaining the CPU time levels in a cost-effective way. By designing IoT devices with these directives, it is possible to reduce the overall environmental footprint and increase the devices’ operational lifespan.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101539"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000526","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy efficiency is crucial for battery-powered devices in constrained networks, especially in Smart Agriculture and Smart Cities scenarios. To maximize battery life and ensure secure communications, lightweight key exchange protocols like Ephemeral Diffie–Hellman Over COSE (EDHOC) are essential. To further optimize energy efficiency, EDHOC can be combined with the Static Context Header Compression (SCHC) protocol, which is designed to compress and fragment data packets. This work demonstrates that EDHOC and SCHC can be successfully integrated to establish secure session keys in Internet of Things (IoT) scenarios. The attained results showcase that security mechanisms can be implemented in resource-limited devices with minimal energy impact, extending battery life. The experiments showed it is possible to compress the EDHOC exchange messages up to a 54% and to reduce the energy consumption by a 20%, while maintaining the CPU time levels in a cost-effective way. By designing IoT devices with these directives, it is possible to reduce the overall environmental footprint and increase the devices’ operational lifespan.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.