Hydrogels of diet-derived electron donors restore epithelial hypoxia and reduce iNOS synthesis to inhibit inflammation-induced overgrowth of facultatively anaerobic bacteria for gut homeostasis
Siying Cheng , Hongliang Wang , Xiaoqian He , Yun Shao , Fengguang Ma , Jianan Huang , Bing Hu , Zhonghua Liu
{"title":"Hydrogels of diet-derived electron donors restore epithelial hypoxia and reduce iNOS synthesis to inhibit inflammation-induced overgrowth of facultatively anaerobic bacteria for gut homeostasis","authors":"Siying Cheng , Hongliang Wang , Xiaoqian He , Yun Shao , Fengguang Ma , Jianan Huang , Bing Hu , Zhonghua Liu","doi":"10.1016/j.colsurfb.2025.114574","DOIUrl":null,"url":null,"abstract":"<div><div>Food hydrogels targeting respiration of microorganisms via changing the micro-ecological environment in gut were prepared through the self-assembly of polyphenols extracted from tea leaves harvested in summer and autumn and the protein fibrils originating from egg white lysozyme. Oral administration with the hydrogels effectively inhibited the over-expansion of the facultative anaerobic bacterium indicated by <em>E. coli</em> Nissle 1917 (EcN) and alleviated the clinic symptoms of chronic intestinal inflammation in mice. Importantly, the hypoxia of epithelial cells was elevated significantly and the overexpression of the inducible NO synthase (INOs)-related NOS2 gene was inhibited substantially in colons of the colitis mice, which accounted for prevention of the abnormal expansion of <em>E. coli via</em> blocking respiration. The treatment with the hydrogels preserved normal mitochondrial function in colonic epithelial cells under oxidative stress, which could serve as the mechanism to maintain the capability to consume oxygen.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114574"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000815","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Food hydrogels targeting respiration of microorganisms via changing the micro-ecological environment in gut were prepared through the self-assembly of polyphenols extracted from tea leaves harvested in summer and autumn and the protein fibrils originating from egg white lysozyme. Oral administration with the hydrogels effectively inhibited the over-expansion of the facultative anaerobic bacterium indicated by E. coli Nissle 1917 (EcN) and alleviated the clinic symptoms of chronic intestinal inflammation in mice. Importantly, the hypoxia of epithelial cells was elevated significantly and the overexpression of the inducible NO synthase (INOs)-related NOS2 gene was inhibited substantially in colons of the colitis mice, which accounted for prevention of the abnormal expansion of E. coli via blocking respiration. The treatment with the hydrogels preserved normal mitochondrial function in colonic epithelial cells under oxidative stress, which could serve as the mechanism to maintain the capability to consume oxygen.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.