Viscoplastic drops impacting a free-slip surface

IF 3.6 2区 工程技术 Q1 MECHANICS
Kindness Isukwem, Elie Hachem, Anselmo Pereira
{"title":"Viscoplastic drops impacting a free-slip surface","authors":"Kindness Isukwem,&nbsp;Elie Hachem,&nbsp;Anselmo Pereira","doi":"10.1016/j.ijmultiphaseflow.2025.105177","DOIUrl":null,"url":null,"abstract":"<div><div>This theoretical and numerical study investigates the physical mechanisms that drive the spreading of viscoplastic drops of millimetric to centimetric size after they collide with a solid surface under free-slip conditions and negligible capillary effects. These impacting drops are modeled as Bingham fluids. The numerical simulations are conducted using a variational multi-scale method tailored to multiphase non-Newtonian fluid flows. The results are analyzed by examining the dynamics of spreading, energy balance, and scaling laws. The findings indicate that the kinetic energy from the impact of the drops is dissipated through viscoplastic effects during the spreading process, leading to the emergence of three distinct flow regimes: inertio-viscous, inertio-plastic, and mixed inertio-visco-plastic. These regimes are heavily influenced by the initial aspect ratio of the impacting drops, suggesting that morphology can be used to control spreading behavior. The study concludes with a diagram that correlates the drop’s maximum spreading and spreading time with various spreading regimes using a single dimensionless quantity termed the <em>impact parameter</em>.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"187 ","pages":"Article 105177"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This theoretical and numerical study investigates the physical mechanisms that drive the spreading of viscoplastic drops of millimetric to centimetric size after they collide with a solid surface under free-slip conditions and negligible capillary effects. These impacting drops are modeled as Bingham fluids. The numerical simulations are conducted using a variational multi-scale method tailored to multiphase non-Newtonian fluid flows. The results are analyzed by examining the dynamics of spreading, energy balance, and scaling laws. The findings indicate that the kinetic energy from the impact of the drops is dissipated through viscoplastic effects during the spreading process, leading to the emergence of three distinct flow regimes: inertio-viscous, inertio-plastic, and mixed inertio-visco-plastic. These regimes are heavily influenced by the initial aspect ratio of the impacting drops, suggesting that morphology can be used to control spreading behavior. The study concludes with a diagram that correlates the drop’s maximum spreading and spreading time with various spreading regimes using a single dimensionless quantity termed the impact parameter.

Abstract Image

粘塑性液滴冲击自由滑动表面
这一理论和数值研究探讨了在自由滑移条件和忽略毛细效应的情况下,驱动毫米到厘米尺寸的粘塑性液滴与固体表面碰撞后扩散的物理机制。这些撞击液滴被模拟为宾厄姆流体。采用针对多相非牛顿流体流动的变分多尺度方法进行了数值模拟。通过研究扩散动力学、能量平衡和标度定律对结果进行了分析。研究结果表明,液滴撞击产生的动能在扩散过程中通过粘塑性效应消散,导致三种不同的流动形式出现:惯性-粘性、惯性-塑性和混合惯性-粘塑性。这些机制受到冲击滴的初始纵横比的严重影响,这表明形态可以用来控制扩散行为。该研究的结论是用一个称为冲击参数的无量纲量绘制了一个图表,该图表将液滴的最大传播和传播时间与各种传播机制联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信