Interconnection of low-temperature metallization on silicon solar cells - The role of silver in tin-bismuth-based solder alloys

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Derya Güldali , Angela De Rose , Max Mittag , Benjamin Grübel , Holger Neuhaus , Ulrich Tetzlaff
{"title":"Interconnection of low-temperature metallization on silicon solar cells - The role of silver in tin-bismuth-based solder alloys","authors":"Derya Güldali ,&nbsp;Angela De Rose ,&nbsp;Max Mittag ,&nbsp;Benjamin Grübel ,&nbsp;Holger Neuhaus ,&nbsp;Ulrich Tetzlaff","doi":"10.1016/j.solmat.2025.113488","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the potential of tin-bismuth (SnBi) alloys micro-alloyed with silver (Ag) to enhance low-temperature (LT) soldering for photovoltaic (PV) modules. The primary focus is on addressing challenges such as intermetallic compound (IMC) formation, which can compromise mechanical strength and durability under thermal cycling, thereby improving the long-term stability of solder joints. A systematic investigation of the influence of the Ag amount is being conducted with the intention to find the optimal alloy composition for SnBi solder joints on LT metallization contacts. The objective is to provide a cost-effective, lead-free alternative for the interconnection of temperature-sensitive solar cells like silicon heterojunction (SHJ) cells. The findings illustrate that the addition of 0.4 %<sub>wt.</sub> Ag notably enhances the wettability and initial mechanical strength of the solder. An increase in the Ag content to 1.0 %<sub>wt.</sub> results in an excessive growth of IMC, which in turn leads to increased brittleness and potential long-term stability issues of the solder joint. Thermal cycling tests demonstrate that modules soldered with SnBiAg0.4 exhibited less than -5 % loss in power. This composition represents an optimal balance between performance and cost. These findings show the potential of SnBiAg0.4 as a suitable solder alloy regarding long-term stability and electrical performance for interconnection of LT metallization contacts of solar cells in PV module manufacturing.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113488"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825000893","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of tin-bismuth (SnBi) alloys micro-alloyed with silver (Ag) to enhance low-temperature (LT) soldering for photovoltaic (PV) modules. The primary focus is on addressing challenges such as intermetallic compound (IMC) formation, which can compromise mechanical strength and durability under thermal cycling, thereby improving the long-term stability of solder joints. A systematic investigation of the influence of the Ag amount is being conducted with the intention to find the optimal alloy composition for SnBi solder joints on LT metallization contacts. The objective is to provide a cost-effective, lead-free alternative for the interconnection of temperature-sensitive solar cells like silicon heterojunction (SHJ) cells. The findings illustrate that the addition of 0.4 %wt. Ag notably enhances the wettability and initial mechanical strength of the solder. An increase in the Ag content to 1.0 %wt. results in an excessive growth of IMC, which in turn leads to increased brittleness and potential long-term stability issues of the solder joint. Thermal cycling tests demonstrate that modules soldered with SnBiAg0.4 exhibited less than -5 % loss in power. This composition represents an optimal balance between performance and cost. These findings show the potential of SnBiAg0.4 as a suitable solder alloy regarding long-term stability and electrical performance for interconnection of LT metallization contacts of solar cells in PV module manufacturing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信