Thermal enhancement of hollow-Core 3DP through nozzle design customization

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Nik Eftekhar Olivo, Valeria Piccioni, Francesco Milano, Fabio Gramazio, Matthias Kohler, Arno Schlueter, Benjamin Dillenburger
{"title":"Thermal enhancement of hollow-Core 3DP through nozzle design customization","authors":"Nik Eftekhar Olivo,&nbsp;Valeria Piccioni,&nbsp;Francesco Milano,&nbsp;Fabio Gramazio,&nbsp;Matthias Kohler,&nbsp;Arno Schlueter,&nbsp;Benjamin Dillenburger","doi":"10.1016/j.susmat.2025.e01273","DOIUrl":null,"url":null,"abstract":"<div><div>On the architectural scale, material extrusion (ME) or Big Area Additive Manufacturing (BAAM) have been fabrication methods for polymer-based components explored as an alternative to injection molding, over the past 20 years. These Additive Manufacturing (AM) techniques face long printing hours, slow material cooling rates, and high material usage when scaling towards building-size components. Hollow-core 3D printing (HC3DP) is an novel fabrication method that addresses these limitations by extruding tubular beads, thereby saving time and materials. A key advantage of HC3DP is its insulating properties due to the air chambers within the prints. This technique has significant potential for large-scale facade fabrication while providing essential thermal insulation.</div><div>However, initial research indicates that deploying HC3DP at an architectural scale, while meeting building insulation standards, requires using a double pane with an internal infill structure. This reduces its ability to optimize time and material efficiency. The full potential of this technology rather relies on its application for the fabrication of single-pane mono-material façade elements. Therefore, as a first step, this research aims to explore the different insulating properties of various HC wall configurations from more complex to infill-less wall typologies. As a second step, thermally optimized bespoke die-end extrusion nozzles are designed for HC3DP of façade panels to achieve higher material, time, and thermal efficiency.</div><div>Through bespoke nozzle customization, different levels of thermal insulation improvement could be achieved, reaching an U-Value of 0.998 W/m2K on a HC3DP single-pane panel, improving by two the insulating capacity of basic single pane circular-sectioned HC, and complying with the nearly zero-energy building (NZEB) standards (1). All of this while reducing printing time, material usage and cost up to half compared to an insulating-equivalent HC3DP wall typology.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"43 ","pages":"Article e01273"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725000417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

On the architectural scale, material extrusion (ME) or Big Area Additive Manufacturing (BAAM) have been fabrication methods for polymer-based components explored as an alternative to injection molding, over the past 20 years. These Additive Manufacturing (AM) techniques face long printing hours, slow material cooling rates, and high material usage when scaling towards building-size components. Hollow-core 3D printing (HC3DP) is an novel fabrication method that addresses these limitations by extruding tubular beads, thereby saving time and materials. A key advantage of HC3DP is its insulating properties due to the air chambers within the prints. This technique has significant potential for large-scale facade fabrication while providing essential thermal insulation.
However, initial research indicates that deploying HC3DP at an architectural scale, while meeting building insulation standards, requires using a double pane with an internal infill structure. This reduces its ability to optimize time and material efficiency. The full potential of this technology rather relies on its application for the fabrication of single-pane mono-material façade elements. Therefore, as a first step, this research aims to explore the different insulating properties of various HC wall configurations from more complex to infill-less wall typologies. As a second step, thermally optimized bespoke die-end extrusion nozzles are designed for HC3DP of façade panels to achieve higher material, time, and thermal efficiency.
Through bespoke nozzle customization, different levels of thermal insulation improvement could be achieved, reaching an U-Value of 0.998 W/m2K on a HC3DP single-pane panel, improving by two the insulating capacity of basic single pane circular-sectioned HC, and complying with the nearly zero-energy building (NZEB) standards (1). All of this while reducing printing time, material usage and cost up to half compared to an insulating-equivalent HC3DP wall typology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信