Minutely monitoring of swash zone processes using a lidar-camera fusion system

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Yoshinao Matsuba , Yoshimitsu Tajima , Takenori Shimozono , Kévin Martins , Masayuki Banno
{"title":"Minutely monitoring of swash zone processes using a lidar-camera fusion system","authors":"Yoshinao Matsuba ,&nbsp;Yoshimitsu Tajima ,&nbsp;Takenori Shimozono ,&nbsp;Kévin Martins ,&nbsp;Masayuki Banno","doi":"10.1016/j.coastaleng.2025.104724","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of effective remote sensing technologies is critical for understanding the dynamics of coastal systems, enabling efficient and sustainable management strategies. Video cameras have been widely used for this purpose, significantly advancing our knowledge of coastal dynamics. However, traditional optical devices cannot directly provide three-dimensional (3D) information, such as beach profiles or runup heights. Recently, lidar scanners have gained attention within the coastal research community for their ability to directly capture high-resolution data on hydro-sediment interactions near shorelines across various scales, providing valuable insights into coastal dynamics. This study presents a fusion system that combines a 3D lidar with a video camera, capable of simultaneously capturing 3D coordinates and surface colors of beaches and nearshore waves. The fusion system was tested at two coastal sites in Japan, demonstrating its high potential for coastal monitoring. At the Hasaki coast, characterized by fine sand, it captured alongshore variations in topographic changes, linked to runup heights and seepage processes over one day. At the Namiita coast, characterized by a mixed sand-gravel beach, the fusion system observed the development of cusp structures over 3 h. The data suggest sand accumulation around gravel and gravel retrieval from the beach surface following an increase in tide level. Although this fusion system was tested at only two coastal sites in Japan, it demonstrates high flexibility and potential for studying swash zone processes across diverse spatiotemporal scales and beaches, including mixed sand-gravel beaches.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"199 ","pages":"Article 104724"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of effective remote sensing technologies is critical for understanding the dynamics of coastal systems, enabling efficient and sustainable management strategies. Video cameras have been widely used for this purpose, significantly advancing our knowledge of coastal dynamics. However, traditional optical devices cannot directly provide three-dimensional (3D) information, such as beach profiles or runup heights. Recently, lidar scanners have gained attention within the coastal research community for their ability to directly capture high-resolution data on hydro-sediment interactions near shorelines across various scales, providing valuable insights into coastal dynamics. This study presents a fusion system that combines a 3D lidar with a video camera, capable of simultaneously capturing 3D coordinates and surface colors of beaches and nearshore waves. The fusion system was tested at two coastal sites in Japan, demonstrating its high potential for coastal monitoring. At the Hasaki coast, characterized by fine sand, it captured alongshore variations in topographic changes, linked to runup heights and seepage processes over one day. At the Namiita coast, characterized by a mixed sand-gravel beach, the fusion system observed the development of cusp structures over 3 h. The data suggest sand accumulation around gravel and gravel retrieval from the beach surface following an increase in tide level. Although this fusion system was tested at only two coastal sites in Japan, it demonstrates high flexibility and potential for studying swash zone processes across diverse spatiotemporal scales and beaches, including mixed sand-gravel beaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信