Aging of gray matter microstructure: A brain-wide characterization of, age group differences using NODDI

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY
Danielle Greenman, Ilana J. Bennett
{"title":"Aging of gray matter microstructure: A brain-wide characterization of, age group differences using NODDI","authors":"Danielle Greenman,&nbsp;Ilana J. Bennett","doi":"10.1016/j.neurobiolaging.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to provide a complete characterization of age group differences in cortical lobar, hippocampal, and subcortical gray matter microstructure using a multi-compartment diffusion-weighted MRI (DWI) approach with parameters optimized for gray matter (Neurite Orientation Dispersion and Density Imaging, NODDI). 76 younger (undergraduate students) and 64 older (surrounding communities) adults underwent diffusion-, T1-, and susceptibility-weighted MRI. Results revealed eight unique patterns across the 12 regions of interest in the relative direction and magnitude of age effects across NODDI metrics, which were grouped into three prominent patterns: cortical gray matter had predominantly higher free diffusion in older than younger adults, the hippocampus and amygdala had predominantly higher dispersion of diffusion and intracellular diffusion in older than younger adults, and the putamen and globus pallidus had lower dispersion of diffusion in older than younger adults. Results remained largely unchanged after controlling for normalized regional volume, suggesting that higher free diffusion in older than younger adults in cortical gray matter was not driven by macrostructural atrophy. Results also remained largely unchanged after controlling for iron content (QSM, R<sub>2</sub>*), even in iron-rich subcortical regions. Taken together, these patterns of age effects across NODDI metrics provide evidence of region-specific neurobiological substrates of aging of gray matter microstructure.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"149 ","pages":"Pages 34-43"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025000284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to provide a complete characterization of age group differences in cortical lobar, hippocampal, and subcortical gray matter microstructure using a multi-compartment diffusion-weighted MRI (DWI) approach with parameters optimized for gray matter (Neurite Orientation Dispersion and Density Imaging, NODDI). 76 younger (undergraduate students) and 64 older (surrounding communities) adults underwent diffusion-, T1-, and susceptibility-weighted MRI. Results revealed eight unique patterns across the 12 regions of interest in the relative direction and magnitude of age effects across NODDI metrics, which were grouped into three prominent patterns: cortical gray matter had predominantly higher free diffusion in older than younger adults, the hippocampus and amygdala had predominantly higher dispersion of diffusion and intracellular diffusion in older than younger adults, and the putamen and globus pallidus had lower dispersion of diffusion in older than younger adults. Results remained largely unchanged after controlling for normalized regional volume, suggesting that higher free diffusion in older than younger adults in cortical gray matter was not driven by macrostructural atrophy. Results also remained largely unchanged after controlling for iron content (QSM, R2*), even in iron-rich subcortical regions. Taken together, these patterns of age effects across NODDI metrics provide evidence of region-specific neurobiological substrates of aging of gray matter microstructure.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信