Corn cob biomass residues: Synergies between thermochemical processes for biofuel production and adsorbent materials for the bioenergy sector

IF 9 1区 工程技术 Q1 ENERGY & FUELS
E. Ciurcina , S. Paniagua , L. Taboada-Ruiz , E. Fuente , L.F. Calvo , F. Suárez-García , M. Díaz-Somoano , B. Ruiz
{"title":"Corn cob biomass residues: Synergies between thermochemical processes for biofuel production and adsorbent materials for the bioenergy sector","authors":"E. Ciurcina ,&nbsp;S. Paniagua ,&nbsp;L. Taboada-Ruiz ,&nbsp;E. Fuente ,&nbsp;L.F. Calvo ,&nbsp;F. Suárez-García ,&nbsp;M. Díaz-Somoano ,&nbsp;B. Ruiz","doi":"10.1016/j.renene.2025.122705","DOIUrl":null,"url":null,"abstract":"<div><div>This research uses corn cob (CC), a renewable material, to make biofuels. The energy conversion was done by conventional and flash pyrolysis (750–850 °C), showing how the process affects the yield and properties of the biofuels. The CC stood out for their high carbon content (48.19 %) and low ash content (1.16 %). Flash pyrolysis increased the gaseous fraction (69.8 %) and the concentration of combustible gases (higher heating value (HHV) = 16.31 MJ/kg). Research has also been carried out on the production of activated carbons from CC char to separate gas mixtures, store gas or upgrade biogas. Higher temperatures and/or amounts of activator improved their textural properties (BET surface area and total pore volume up to 1982 m<sup>2</sup>/g and 0.820 cm<sup>3</sup>/g). These adsorbents are highly effective in CO<sub>2</sub> adsorption, with a capacity of up to 15.3 mmol/g at 3 MPa for that obtained with KOH at 700 °C and 2:1 wt ratio. They are good at absorbing methane at 3 MPa with a maximum of 8.8 mmol/g when prepared with KOH at 800 °C and 2:1 wt ratio. Hydrogen adsorption was limited. The potential of CC for biofuel production through pyrolysis and the development of adsorbents applicable to the bioenergy sector have been proven.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122705"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125003672","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research uses corn cob (CC), a renewable material, to make biofuels. The energy conversion was done by conventional and flash pyrolysis (750–850 °C), showing how the process affects the yield and properties of the biofuels. The CC stood out for their high carbon content (48.19 %) and low ash content (1.16 %). Flash pyrolysis increased the gaseous fraction (69.8 %) and the concentration of combustible gases (higher heating value (HHV) = 16.31 MJ/kg). Research has also been carried out on the production of activated carbons from CC char to separate gas mixtures, store gas or upgrade biogas. Higher temperatures and/or amounts of activator improved their textural properties (BET surface area and total pore volume up to 1982 m2/g and 0.820 cm3/g). These adsorbents are highly effective in CO2 adsorption, with a capacity of up to 15.3 mmol/g at 3 MPa for that obtained with KOH at 700 °C and 2:1 wt ratio. They are good at absorbing methane at 3 MPa with a maximum of 8.8 mmol/g when prepared with KOH at 800 °C and 2:1 wt ratio. Hydrogen adsorption was limited. The potential of CC for biofuel production through pyrolysis and the development of adsorbents applicable to the bioenergy sector have been proven.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信