Experimental investigation on voltage response during mode switching from electrolysis cell to fuel cell when using gas purge

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Huiyan Li, Fang Ye, Hang Guo
{"title":"Experimental investigation on voltage response during mode switching from electrolysis cell to fuel cell when using gas purge","authors":"Huiyan Li,&nbsp;Fang Ye,&nbsp;Hang Guo","doi":"10.1016/j.renene.2025.122658","DOIUrl":null,"url":null,"abstract":"<div><div>A proton exchange membrane unitized regenerative fuel cell test platform is designed, to experimentally investigate the cell response under different operation conditions using gas purge during mode switching from electrolytic cell to fuel cell. Results indicate that: at non-humidified state, with the rise of non-insert gas flow rate, the fuel cell voltage firstly displays upward trend, reaches a maximum and then goes down. Nevertheless, the voltage in fuel cell mode under humidified state does not change significantly. The fuel cell voltage drops with purge time increasing. As the increase of current density of fuel cell startup, voltage drops at the end of fuel cell working. Under non-humidified state, the increase of fuel cell voltage is not obvious with the rise of electrolytic current density. While fuel cell voltage firstly increases and then goes down under humidified state. In addition, the voltage during mode switching using inert gas purge is also obtained.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122658"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125003209","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A proton exchange membrane unitized regenerative fuel cell test platform is designed, to experimentally investigate the cell response under different operation conditions using gas purge during mode switching from electrolytic cell to fuel cell. Results indicate that: at non-humidified state, with the rise of non-insert gas flow rate, the fuel cell voltage firstly displays upward trend, reaches a maximum and then goes down. Nevertheless, the voltage in fuel cell mode under humidified state does not change significantly. The fuel cell voltage drops with purge time increasing. As the increase of current density of fuel cell startup, voltage drops at the end of fuel cell working. Under non-humidified state, the increase of fuel cell voltage is not obvious with the rise of electrolytic current density. While fuel cell voltage firstly increases and then goes down under humidified state. In addition, the voltage during mode switching using inert gas purge is also obtained.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信