Coral incorporating microplastics leads to a health-risking immunometabolic shift

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Chuan-Ho Tang , Ching-Yu Lin , Hsing-Hui Li
{"title":"Coral incorporating microplastics leads to a health-risking immunometabolic shift","authors":"Chuan-Ho Tang ,&nbsp;Ching-Yu Lin ,&nbsp;Hsing-Hui Li","doi":"10.1016/j.chemosphere.2025.144245","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastic pollution has been associated with coral susceptibility to disease, yet the underlying mechanism is unclear. An untargeted lipidomic profiling was therefore performed to gain an insight into the effect of microplastics on a vulnerable coral (<em>Turbinaria mesenterina</em>) of actively reacting to suspended particles. Expending storage lipids on actions such as increasing 20:4-possessing ether membrane lipids and mitochondrial β-oxidation for immunoactivation was observed in coral hosts. A molecular realignment of symbiotic communication was correspondingly observed from symbiotic algae activating anti-inflammatory actions, which employed the 22:6-deriving effects that expended storage lipids as well, by, for example, increasing 22:6-possessing membrane lipids. Symbiotic algae reacting against the heightened host immunity also led to a metabolic compromise that lowered photoprotective capacity. Worryingly, increasing these polyunsaturated membrane lipids potentially sensitize the cells to oxidative stress-induced cell death that was simultaneously indicated by a sphingolipid profile as lipid peroxidation preliminarily increased in coral. Microplastic accumulation thus potentially increase coral susceptibility to environmental factors being able to elevating the oxidative stress, such as light-heat stress. In this manner, microplastic pollution in the ocean would chronically impair coral health, being highlighted by this study.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"374 ","pages":"Article 144245"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525001870","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic pollution has been associated with coral susceptibility to disease, yet the underlying mechanism is unclear. An untargeted lipidomic profiling was therefore performed to gain an insight into the effect of microplastics on a vulnerable coral (Turbinaria mesenterina) of actively reacting to suspended particles. Expending storage lipids on actions such as increasing 20:4-possessing ether membrane lipids and mitochondrial β-oxidation for immunoactivation was observed in coral hosts. A molecular realignment of symbiotic communication was correspondingly observed from symbiotic algae activating anti-inflammatory actions, which employed the 22:6-deriving effects that expended storage lipids as well, by, for example, increasing 22:6-possessing membrane lipids. Symbiotic algae reacting against the heightened host immunity also led to a metabolic compromise that lowered photoprotective capacity. Worryingly, increasing these polyunsaturated membrane lipids potentially sensitize the cells to oxidative stress-induced cell death that was simultaneously indicated by a sphingolipid profile as lipid peroxidation preliminarily increased in coral. Microplastic accumulation thus potentially increase coral susceptibility to environmental factors being able to elevating the oxidative stress, such as light-heat stress. In this manner, microplastic pollution in the ocean would chronically impair coral health, being highlighted by this study.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信