Daydreaming Hopfield Networks and their surprising effectiveness on correlated data

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ludovica Serricchio , Dario Bocchi , Claudio Chilin , Raffaele Marino , Matteo Negri , Chiara Cammarota , Federico Ricci-Tersenghi
{"title":"Daydreaming Hopfield Networks and their surprising effectiveness on correlated data","authors":"Ludovica Serricchio ,&nbsp;Dario Bocchi ,&nbsp;Claudio Chilin ,&nbsp;Raffaele Marino ,&nbsp;Matteo Negri ,&nbsp;Chiara Cammarota ,&nbsp;Federico Ricci-Tersenghi","doi":"10.1016/j.neunet.2025.107216","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the storage capacity of the Hopfield model, we develop a version of the dreaming algorithm that <em>perpetually</em> reinforces the patterns to be stored (as in the Hebb rule), and erases the spurious memories (as in dreaming algorithms). For this reason, we called it <em>Daydreaming</em>. Daydreaming is not destructive and it converges asymptotically to stationary retrieval maps. When trained on random uncorrelated examples, the model shows optimal performance in terms of the size of the basins of attraction of stored examples and the quality of reconstruction. We also train the Daydreaming algorithm on correlated data obtained via the random-features model and argue that it spontaneously exploits the correlations thus increasing even further the storage capacity and the size of the basins of attraction. Moreover, the Daydreaming algorithm is also able to stabilize the features hidden in the data. Finally, we test Daydreaming on the MNIST dataset and show that it still works surprisingly well, producing attractors that are close to unseen examples and class prototypes.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107216"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000954","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the storage capacity of the Hopfield model, we develop a version of the dreaming algorithm that perpetually reinforces the patterns to be stored (as in the Hebb rule), and erases the spurious memories (as in dreaming algorithms). For this reason, we called it Daydreaming. Daydreaming is not destructive and it converges asymptotically to stationary retrieval maps. When trained on random uncorrelated examples, the model shows optimal performance in terms of the size of the basins of attraction of stored examples and the quality of reconstruction. We also train the Daydreaming algorithm on correlated data obtained via the random-features model and argue that it spontaneously exploits the correlations thus increasing even further the storage capacity and the size of the basins of attraction. Moreover, the Daydreaming algorithm is also able to stabilize the features hidden in the data. Finally, we test Daydreaming on the MNIST dataset and show that it still works surprisingly well, producing attractors that are close to unseen examples and class prototypes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信