Correspondence between thalamic injury-induced changes in resting-state fMRI of monkeys and their sensorimotor behaviors and neural activities

IF 3.4 2区 医学 Q2 NEUROIMAGING
Anirban Sengupta , Pai-Feng Yang , Jamie L. Reed , Arabinda Mishra , Feng Wang , Isaac V Manzanera Esteve , Zhangyan Yang , Li Min Chen , John C. Gore
{"title":"Correspondence between thalamic injury-induced changes in resting-state fMRI of monkeys and their sensorimotor behaviors and neural activities","authors":"Anirban Sengupta ,&nbsp;Pai-Feng Yang ,&nbsp;Jamie L. Reed ,&nbsp;Arabinda Mishra ,&nbsp;Feng Wang ,&nbsp;Isaac V Manzanera Esteve ,&nbsp;Zhangyan Yang ,&nbsp;Li Min Chen ,&nbsp;John C. Gore","doi":"10.1016/j.nicl.2025.103753","DOIUrl":null,"url":null,"abstract":"<div><div>Resting state functional MRI (rsfMRI) exploits variations in blood-oxygenation-level-dependent (BOLD) signals to infer resting state functional connectivity (FC) within and between brain networks. However, there have been few reports quantifying and validating the results of rsfMRI analyses with other metrics of brain circuits. We measured longitudinal changes in FC both within and between brain networks in three squirrel monkeys after focal lesions of the thalamic ventroposterior lateral nucleus (VPL) that were intended to disrupt the input to somatosensory cortex and impair manual dexterity. Local field potential signals were recorded to assess electrophysiological changes during each animal’s recovery, and behavioral performances were measured longitudinally using a sugar-pellet grasping task. Finally, end-point histological evaluations were performed on brain tissue slices to quantify the VPL damage. The rsfMRI data analysis showed significant decrease in FC measures both within and between networks immediately post-injury, which started to recover at different time-points for each animal. The trajectories of FC recovery for each animal mirrored their individual behavioral recovery time-courses. Electrophysiological measurements of inter-electrode coherences and end-point histological measures also aligned well with the graded injury effects measured using rsfMRI-based FC. A simple algorithm employing FC measures from the somatosensory network could accurately predict each monkeys’ behavioral recovery timeframe after four weeks post-injury. Whole brain between-network FC measures further revealed that the injury effects were not limited to thalamocortical connections but were rather more widespread. Overall, this study provides evidence of the validity of rsfMRI based FC measures as indicators of the functional integrity and behavioral relevance following an injury to a specific brain circuit.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"45 ","pages":"Article 103753"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225000233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Resting state functional MRI (rsfMRI) exploits variations in blood-oxygenation-level-dependent (BOLD) signals to infer resting state functional connectivity (FC) within and between brain networks. However, there have been few reports quantifying and validating the results of rsfMRI analyses with other metrics of brain circuits. We measured longitudinal changes in FC both within and between brain networks in three squirrel monkeys after focal lesions of the thalamic ventroposterior lateral nucleus (VPL) that were intended to disrupt the input to somatosensory cortex and impair manual dexterity. Local field potential signals were recorded to assess electrophysiological changes during each animal’s recovery, and behavioral performances were measured longitudinally using a sugar-pellet grasping task. Finally, end-point histological evaluations were performed on brain tissue slices to quantify the VPL damage. The rsfMRI data analysis showed significant decrease in FC measures both within and between networks immediately post-injury, which started to recover at different time-points for each animal. The trajectories of FC recovery for each animal mirrored their individual behavioral recovery time-courses. Electrophysiological measurements of inter-electrode coherences and end-point histological measures also aligned well with the graded injury effects measured using rsfMRI-based FC. A simple algorithm employing FC measures from the somatosensory network could accurately predict each monkeys’ behavioral recovery timeframe after four weeks post-injury. Whole brain between-network FC measures further revealed that the injury effects were not limited to thalamocortical connections but were rather more widespread. Overall, this study provides evidence of the validity of rsfMRI based FC measures as indicators of the functional integrity and behavioral relevance following an injury to a specific brain circuit.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage-Clinical
Neuroimage-Clinical NEUROIMAGING-
CiteScore
7.50
自引率
4.80%
发文量
368
审稿时长
52 days
期刊介绍: NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging. The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信