Machine learning prediction of surface roughness in sustainable machining of AISI H11 tool steel

Balasuadhakar A. , Thirumalai Kumaran S. , Uthayakumar M.
{"title":"Machine learning prediction of surface roughness in sustainable machining of AISI H11 tool steel","authors":"Balasuadhakar A. ,&nbsp;Thirumalai Kumaran S. ,&nbsp;Uthayakumar M.","doi":"10.1016/j.smmf.2025.100075","DOIUrl":null,"url":null,"abstract":"<div><div>Surface roughness prediction ensures high product quality, boosts manufacturing efficiency, and aids in effective tool life management. In this study, surface roughness optimization and prediction in the end milling of AISI H11 die steel were examined under three cooling conditions: dry milling, Minimum Quantity Lubrication (MQL), and Nano Fluid Minimum Quantity Lubrication (NMQL). The experiments were designed using a Taguchi L27 orthogonal array, with cutting speed, feed, and cooling environments as the variables. Surface roughness, the performance output parameter, was analyzed through Taguchi Signal-to-Noise (S/N) analysis. The dataset's diversity and robustness were further enhanced using the Gaussian Data Augmentation (GDA) technique, ensuring improved predictive accuracy of the Machine Learning (ML) models. Advanced machine ML models, including Decision Tree(DT), XGBoost (XGB), Support Vector Regression (SVR), CATBoost, AdaBoost Regression (ABR), and Random Forest Regression (RFR), were developed, with hyperparameters optimized using Grid Search Cross Validation. The ideal cutting parameters were identified as a cutting speed of 40 m/min, a feed rate of 0.01 mm/rev, and utilization of the NMQL cooling environment. The ML models, including DT, ABR, RFR, and CATBoost, demonstrate exceptional performance by achieving accuracy rates above 90 % and determinant coefficient (R<sup>2</sup>) greater than 0.9. Remarkably, the CATBoost model exhibited heightened precision, boasting 90.8 % accuracy, a R<sup>2</sup> of 0.94, a mean absolute error (MAE) of 0.05, a mean squared error (MSE) of 0.005, a root mean squared error (RMSE) of 0.07, and a mean absolute percentage error (MAPE) of 9.17.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810225000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface roughness prediction ensures high product quality, boosts manufacturing efficiency, and aids in effective tool life management. In this study, surface roughness optimization and prediction in the end milling of AISI H11 die steel were examined under three cooling conditions: dry milling, Minimum Quantity Lubrication (MQL), and Nano Fluid Minimum Quantity Lubrication (NMQL). The experiments were designed using a Taguchi L27 orthogonal array, with cutting speed, feed, and cooling environments as the variables. Surface roughness, the performance output parameter, was analyzed through Taguchi Signal-to-Noise (S/N) analysis. The dataset's diversity and robustness were further enhanced using the Gaussian Data Augmentation (GDA) technique, ensuring improved predictive accuracy of the Machine Learning (ML) models. Advanced machine ML models, including Decision Tree(DT), XGBoost (XGB), Support Vector Regression (SVR), CATBoost, AdaBoost Regression (ABR), and Random Forest Regression (RFR), were developed, with hyperparameters optimized using Grid Search Cross Validation. The ideal cutting parameters were identified as a cutting speed of 40 m/min, a feed rate of 0.01 mm/rev, and utilization of the NMQL cooling environment. The ML models, including DT, ABR, RFR, and CATBoost, demonstrate exceptional performance by achieving accuracy rates above 90 % and determinant coefficient (R2) greater than 0.9. Remarkably, the CATBoost model exhibited heightened precision, boasting 90.8 % accuracy, a R2 of 0.94, a mean absolute error (MAE) of 0.05, a mean squared error (MSE) of 0.005, a root mean squared error (RMSE) of 0.07, and a mean absolute percentage error (MAPE) of 9.17.

Abstract Image

aisih11工具钢可持续加工中表面粗糙度的机器学习预测
表面粗糙度预测可确保高产品质量,提高制造效率,并有助于有效的刀具寿命管理。在干铣削、最小量润滑和纳米流体最小量润滑三种冷却条件下,研究了AISI H11模型钢立铣削表面粗糙度优化与预测。实验采用田口L27正交阵列设计,以切削速度、进给和冷却环境为变量。通过田口信噪比(S/N)分析了性能输出参数表面粗糙度。使用高斯数据增强(GDA)技术进一步增强数据集的多样性和鲁棒性,确保提高机器学习(ML)模型的预测准确性。开发了先进的机器学习模型,包括决策树(DT)、XGBoost (XGB)、支持向量回归(SVR)、CATBoost、AdaBoost回归(ABR)和随机森林回归(RFR),并使用网格搜索交叉验证对超参数进行了优化。理想切削参数为切削速度为40 m/min,进给速度为0.01 mm/rev,采用NMQL冷却环境。包括DT、ABR、RFR和CATBoost在内的ML模型表现出优异的性能,准确率超过90%,决定系数(R2)大于0.9。值得注意的是,CATBoost模型具有更高的精度,准确率为90.8%,R2为0.94,平均绝对误差(MAE)为0.05,均方误差(MSE)为0.005,均方根误差(RMSE)为0.07,平均绝对百分比误差(MAPE)为9.17。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信