Prussian blue nanocubes growth by electrochemical deposition on sulfur-doped graphene as nanozyme: Optimization and application in the field of environmental sensors

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Oana Brincoveanu , Elisabeta-Irina Geana , Cosmin Romanitan , Cristina Pachiu , Alexandra Mocanu , Sabrina State , Adi Ghebaur , Sevinc Kurbanoglu , Gregor Marolt , Livia Alexandra Dinu
{"title":"Prussian blue nanocubes growth by electrochemical deposition on sulfur-doped graphene as nanozyme: Optimization and application in the field of environmental sensors","authors":"Oana Brincoveanu ,&nbsp;Elisabeta-Irina Geana ,&nbsp;Cosmin Romanitan ,&nbsp;Cristina Pachiu ,&nbsp;Alexandra Mocanu ,&nbsp;Sabrina State ,&nbsp;Adi Ghebaur ,&nbsp;Sevinc Kurbanoglu ,&nbsp;Gregor Marolt ,&nbsp;Livia Alexandra Dinu","doi":"10.1016/j.apsadv.2025.100716","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the electrochemical deposition of Prussian blue (PB) nanomaterial on top of a sulfur-doped graphene (S-Gr) drop-casted on a screen-printed carbon working electrode (SPCE) for the development of environmental sensing devices with higher sensitivity to phenolic pollutants. The deposition process was optimized by carefully controlling the deposition parameters to achieve PB nanocubes (PBNCs) with an average size of ∼ 50 nm. The resulting nanocomposite material, PBNCs-S-Gr, was evaluated for the electrooxidation of hydroquinone (HQ), a widely studied phenolic compound, to demonstrate its catalytic activity in oxidizing phenolic substrates, effectively mimicking the enzymatic behavior of natural peroxidase. The obtained PBNCs-S-Gr/SPCE presented a calculated limit of detection (LOD) of 0.33 nM and an increased sensitivity of 1.5 µA × <em>M</em><sup>-1</sup>, with a wide linear concentration range from 0.001 to 10 µM for HQ detection. Notably, the recovery values obtained for surface water samples fall within the range of 92.1 % to 98.9 %, indicating strong agreement with results derived from the standard method, ultra high-performance liquid chromatography system with diode array detection (UHPLC-DAD).</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100716"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652392500025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the electrochemical deposition of Prussian blue (PB) nanomaterial on top of a sulfur-doped graphene (S-Gr) drop-casted on a screen-printed carbon working electrode (SPCE) for the development of environmental sensing devices with higher sensitivity to phenolic pollutants. The deposition process was optimized by carefully controlling the deposition parameters to achieve PB nanocubes (PBNCs) with an average size of ∼ 50 nm. The resulting nanocomposite material, PBNCs-S-Gr, was evaluated for the electrooxidation of hydroquinone (HQ), a widely studied phenolic compound, to demonstrate its catalytic activity in oxidizing phenolic substrates, effectively mimicking the enzymatic behavior of natural peroxidase. The obtained PBNCs-S-Gr/SPCE presented a calculated limit of detection (LOD) of 0.33 nM and an increased sensitivity of 1.5 µA × M-1, with a wide linear concentration range from 0.001 to 10 µM for HQ detection. Notably, the recovery values obtained for surface water samples fall within the range of 92.1 % to 98.9 %, indicating strong agreement with results derived from the standard method, ultra high-performance liquid chromatography system with diode array detection (UHPLC-DAD).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信