Tβ4-exosome-loaded hemostatic and antibacterial hydrogel to improve vascular regeneration and modulate macrophage polarization for diabetic wound treatment
Hua Yu , Bin Wang , Zihao Li , Kaibo Liu , Wanying Chen , Songyun Zhao , Yu Zhou , Gaoyi Wang , Yaqin Zhou , Yanming Chen , Housheng Chen , Yunning Lai , Quan Wang , Jingping Wang , Binting Ni , Dupiao Zhang , Chuanmeng Pan , Yucang He , Liqun Li
{"title":"Tβ4-exosome-loaded hemostatic and antibacterial hydrogel to improve vascular regeneration and modulate macrophage polarization for diabetic wound treatment","authors":"Hua Yu , Bin Wang , Zihao Li , Kaibo Liu , Wanying Chen , Songyun Zhao , Yu Zhou , Gaoyi Wang , Yaqin Zhou , Yanming Chen , Housheng Chen , Yunning Lai , Quan Wang , Jingping Wang , Binting Ni , Dupiao Zhang , Chuanmeng Pan , Yucang He , Liqun Li","doi":"10.1016/j.mtbio.2025.101585","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds often exhibit delayed healing due to compromised vascular function and intensified inflammation. In this study, we overexpressed Thymosin β4 (Tβ4) in Adipose-Derived Stem Cells (ADSCs) to produce Exosomes (Exos) rich in Tβ4. We then utilized a dual photopolymerizable hydrogel composed of Hyaluronic Acid Methacryloyl (HAMA) and Poly-L-lysine Methacryloyl (PLMA) for the sustained release of Tβ4-Exos on diabetic wounds. The results showed that Tβ4-Exos could stimulate angiogenesis and collagen synthesis, and mitigate inflammation in diabetic wounds by promoting the polarization of M1-type macrophages and inhibiting that of M2-type macrophages. Furthermore, Tβ4-Exos was found to activate the PI3K/AKT/mTOR/HIF-1a signaling pathway, thereby enhancing vascular proliferation. In summary, the sustained release of Tβ4-Exos in HAMA-PLMA (HP) hydrogel and the management of inflammation through the upregulation of the HIF-1a pathway and modulation of macrophage polarization in vascular proliferation significantly accelerated the healing process of diabetic wounds.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101585"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425001437","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic wounds often exhibit delayed healing due to compromised vascular function and intensified inflammation. In this study, we overexpressed Thymosin β4 (Tβ4) in Adipose-Derived Stem Cells (ADSCs) to produce Exosomes (Exos) rich in Tβ4. We then utilized a dual photopolymerizable hydrogel composed of Hyaluronic Acid Methacryloyl (HAMA) and Poly-L-lysine Methacryloyl (PLMA) for the sustained release of Tβ4-Exos on diabetic wounds. The results showed that Tβ4-Exos could stimulate angiogenesis and collagen synthesis, and mitigate inflammation in diabetic wounds by promoting the polarization of M1-type macrophages and inhibiting that of M2-type macrophages. Furthermore, Tβ4-Exos was found to activate the PI3K/AKT/mTOR/HIF-1a signaling pathway, thereby enhancing vascular proliferation. In summary, the sustained release of Tβ4-Exos in HAMA-PLMA (HP) hydrogel and the management of inflammation through the upregulation of the HIF-1a pathway and modulation of macrophage polarization in vascular proliferation significantly accelerated the healing process of diabetic wounds.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).