circEgg inhibits BmCPV infection by regulating the transition between H3K9me3 and H3K9ac

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qunnan Qiu , Xinyu Tong , Min Zhu , Zhe Liu , Mei Yin , Shutong Jiang , Liuyang Li , Yuqing Huang , Yongjie Feng , Xiaolong Hu , Chengliang Gong
{"title":"circEgg inhibits BmCPV infection by regulating the transition between H3K9me3 and H3K9ac","authors":"Qunnan Qiu ,&nbsp;Xinyu Tong ,&nbsp;Min Zhu ,&nbsp;Zhe Liu ,&nbsp;Mei Yin ,&nbsp;Shutong Jiang ,&nbsp;Liuyang Li ,&nbsp;Yuqing Huang ,&nbsp;Yongjie Feng ,&nbsp;Xiaolong Hu ,&nbsp;Chengliang Gong","doi":"10.1016/j.pestbp.2025.106334","DOIUrl":null,"url":null,"abstract":"<div><div>Our previous study demonstrated that the expression level of circRNA circEgg, which is encoded by histone-lysine <em>N</em>-methyltransferase eggless (BmEgg), is responsive to <em>Bombyx mori</em> cytoplasmic polyhedrosis virus (BmCPV) infection in the silkworm. However, the precise relationship between BmCPV infection and circEgg remains unclear. In this study, we observed that the expression level of circEgg in both the midguts and cultured BmN cells significantly increased after BmCPV infection, while the expression of its host gene, BmEgg, exhibited an opposite trend. Transient expression experiments revealed that circEgg acts to inhibit BmCPV infection. Additionally, Western blot analyses indicated that BmCPV infection leads to a downregulation of histone 3 lysine 9 trimethylation (H3K9me3) and an upregulation of histone 3 lysine 9 acetylation (H3K9ac). Notably, the levels of H3K9ac and H3K9me3 were found to be positively and negatively correlated with circEgg expression, respectively, suggesting that circEgg may regulate the transition between H3K9me3 and H3K9ac. Mechanistically, we discovered that circEgg inhibits BmCPV infection by enhancing the H3K9ac level through the circEgg-bmo-miR-3391-5p-histone deacetylase Rpd3 network, while simultaneously reducing the H3K9me3 level via the circEgg-encoded protein circEgg-P122. Collectively, these findings indicate that circEgg plays a crucial role in inhibiting BmCPV infection by modulating the balance between H3K9me3 and H3K9ac.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106334"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000471","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous study demonstrated that the expression level of circRNA circEgg, which is encoded by histone-lysine N-methyltransferase eggless (BmEgg), is responsive to Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) infection in the silkworm. However, the precise relationship between BmCPV infection and circEgg remains unclear. In this study, we observed that the expression level of circEgg in both the midguts and cultured BmN cells significantly increased after BmCPV infection, while the expression of its host gene, BmEgg, exhibited an opposite trend. Transient expression experiments revealed that circEgg acts to inhibit BmCPV infection. Additionally, Western blot analyses indicated that BmCPV infection leads to a downregulation of histone 3 lysine 9 trimethylation (H3K9me3) and an upregulation of histone 3 lysine 9 acetylation (H3K9ac). Notably, the levels of H3K9ac and H3K9me3 were found to be positively and negatively correlated with circEgg expression, respectively, suggesting that circEgg may regulate the transition between H3K9me3 and H3K9ac. Mechanistically, we discovered that circEgg inhibits BmCPV infection by enhancing the H3K9ac level through the circEgg-bmo-miR-3391-5p-histone deacetylase Rpd3 network, while simultaneously reducing the H3K9me3 level via the circEgg-encoded protein circEgg-P122. Collectively, these findings indicate that circEgg plays a crucial role in inhibiting BmCPV infection by modulating the balance between H3K9me3 and H3K9ac.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信