Dielectrophoresis-based microfluidics for detection and separation of circulating tumor cells

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Iman Najafipour , Pegah Sadeh , Ali Mohammad Amani , Hesam Kamyab , Shreeshivadasan Chelliapan , Saravanan Rajendran , Ana Belén Peñaherrera-Pazmiño , Sajad Jamalpour
{"title":"Dielectrophoresis-based microfluidics for detection and separation of circulating tumor cells","authors":"Iman Najafipour ,&nbsp;Pegah Sadeh ,&nbsp;Ali Mohammad Amani ,&nbsp;Hesam Kamyab ,&nbsp;Shreeshivadasan Chelliapan ,&nbsp;Saravanan Rajendran ,&nbsp;Ana Belén Peñaherrera-Pazmiño ,&nbsp;Sajad Jamalpour","doi":"10.1016/j.snr.2025.100304","DOIUrl":null,"url":null,"abstract":"<div><div>Circulating tumor cells (CTCs) represent a critical focus in cancer research due to their potential to enable early detection, monitor disease progression, and facilitate personalized therapies. However, existing isolation techniques often face significant limitations, including low specificity, reduced recovery rates, and the inability to preserve cellular viability for downstream applications such as genetic profiling and drug testing. This review addresses a key knowledge gap in the development of efficient, label-free, and scalable technologies for CTC isolation, emphasizing the role of dielectrophoresis (DEP)-based microfluidic systems. DEP leverages the intrinsic dielectric properties of cells to enable selective and non-invasive separation, eliminating the need for surface markers and ensuring high cell integrity. The study highlights the integration of nanomaterials, such as gold nanoparticles and graphene oxide nanosheets, as a novel approach to overcome existing challenges in DEP-based platforms. These nanomaterials improve the specificity and sensitivity of CTC capture by increasing surface area and biocompatibility. Key advancements discussed include the optimization of electrode designs, tuning of electric field parameters, and innovative system configurations that enhance recovery efficiency and separation purity. The review also compares various DEP configurations, such as electrode-based, insulator-based, and contactless systems, evaluating their unique advantages and suitability for different applications. In addition to reviewing current advancements, the paper outlines future directions for the field, emphasizing the need for large-scale clinical validation to establish DEP-based systems as reliable diagnostic tools. This review provides a comprehensive framework for advancing DEP-based microfluidic platforms, offering a transformative approach for early cancer detection, personalized medicine, and the broader application of innovative diagnostic technologies in clinical settings.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"9 ","pages":"Article 100304"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053925000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Circulating tumor cells (CTCs) represent a critical focus in cancer research due to their potential to enable early detection, monitor disease progression, and facilitate personalized therapies. However, existing isolation techniques often face significant limitations, including low specificity, reduced recovery rates, and the inability to preserve cellular viability for downstream applications such as genetic profiling and drug testing. This review addresses a key knowledge gap in the development of efficient, label-free, and scalable technologies for CTC isolation, emphasizing the role of dielectrophoresis (DEP)-based microfluidic systems. DEP leverages the intrinsic dielectric properties of cells to enable selective and non-invasive separation, eliminating the need for surface markers and ensuring high cell integrity. The study highlights the integration of nanomaterials, such as gold nanoparticles and graphene oxide nanosheets, as a novel approach to overcome existing challenges in DEP-based platforms. These nanomaterials improve the specificity and sensitivity of CTC capture by increasing surface area and biocompatibility. Key advancements discussed include the optimization of electrode designs, tuning of electric field parameters, and innovative system configurations that enhance recovery efficiency and separation purity. The review also compares various DEP configurations, such as electrode-based, insulator-based, and contactless systems, evaluating their unique advantages and suitability for different applications. In addition to reviewing current advancements, the paper outlines future directions for the field, emphasizing the need for large-scale clinical validation to establish DEP-based systems as reliable diagnostic tools. This review provides a comprehensive framework for advancing DEP-based microfluidic platforms, offering a transformative approach for early cancer detection, personalized medicine, and the broader application of innovative diagnostic technologies in clinical settings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信