Amlexanox ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting Th17 cells and the NF-κB signal pathway

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Juan Wu , Shan Liu , Hongwei Zhang , Xingyue Zhang , Jie Xue , Zhengjuan Li , Yue Zhang , Yiming Jiang , Pengyan Zhang , Menglin Yang , Qinghua Cui , Guanhua Du , Lili Zhao
{"title":"Amlexanox ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting Th17 cells and the NF-κB signal pathway","authors":"Juan Wu ,&nbsp;Shan Liu ,&nbsp;Hongwei Zhang ,&nbsp;Xingyue Zhang ,&nbsp;Jie Xue ,&nbsp;Zhengjuan Li ,&nbsp;Yue Zhang ,&nbsp;Yiming Jiang ,&nbsp;Pengyan Zhang ,&nbsp;Menglin Yang ,&nbsp;Qinghua Cui ,&nbsp;Guanhua Du ,&nbsp;Lili Zhao","doi":"10.1016/j.biopha.2025.117922","DOIUrl":null,"url":null,"abstract":"<div><div>Psoriasis is a chronic inflammatory dermatological disorder characterized by the aberrant differentiation and hyperproliferation of epidermal keratinocytes, boosted immune cell infiltration, and cytokine and chemokine production. Patients with psoriasis experience persistent discomfort and their conditions remain incurable. Therefore, development of safe and effective treatments for psoriasis is critical. Amlexanox, a tricyclic amine carboxylic acid, has various pharmacological advantages in previous studies, including anti-inflammatory, anti-allergic, immunomodulatory, and metabolic properties. Here we used the imiquimod (IMQ)-induced animal model and interleukin 17 A (IL-17A) activated keratinocytes to examine the efficacy of amlexanox in the treatment of psoriasis. Immunological and histological analyses revealed that both topical and oral administration of amlexanox reduced psoriatic symptoms such as increased skin thickness, erythema, scale formation, and immune cell infiltration. In the IMQ-induced mouse model, amlexanox also reduced splenic Th17 cell counts and the production of IL-17/Th17-associated cytokines and chemokines. Furthermore, amlexanox inhibited nuclear factor-κB phosphorylation in IL-17 activated keratinocytes. These findings indicated that amlexanox effectively alleviated psoriatic symptoms through both oral and topical administration. We propose that amlexanox is a potent therapeutic candidate for the treatment of psoriasis.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117922"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001167","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Psoriasis is a chronic inflammatory dermatological disorder characterized by the aberrant differentiation and hyperproliferation of epidermal keratinocytes, boosted immune cell infiltration, and cytokine and chemokine production. Patients with psoriasis experience persistent discomfort and their conditions remain incurable. Therefore, development of safe and effective treatments for psoriasis is critical. Amlexanox, a tricyclic amine carboxylic acid, has various pharmacological advantages in previous studies, including anti-inflammatory, anti-allergic, immunomodulatory, and metabolic properties. Here we used the imiquimod (IMQ)-induced animal model and interleukin 17 A (IL-17A) activated keratinocytes to examine the efficacy of amlexanox in the treatment of psoriasis. Immunological and histological analyses revealed that both topical and oral administration of amlexanox reduced psoriatic symptoms such as increased skin thickness, erythema, scale formation, and immune cell infiltration. In the IMQ-induced mouse model, amlexanox also reduced splenic Th17 cell counts and the production of IL-17/Th17-associated cytokines and chemokines. Furthermore, amlexanox inhibited nuclear factor-κB phosphorylation in IL-17 activated keratinocytes. These findings indicated that amlexanox effectively alleviated psoriatic symptoms through both oral and topical administration. We propose that amlexanox is a potent therapeutic candidate for the treatment of psoriasis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信