Enhancing feeder bus service coverage with Multi-Agent Reinforcement Learning: A case study in Hong Kong

IF 8.3 1区 工程技术 Q1 ECONOMICS
Yang Su, Hai Yang
{"title":"Enhancing feeder bus service coverage with Multi-Agent Reinforcement Learning: A case study in Hong Kong","authors":"Yang Su,&nbsp;Hai Yang","doi":"10.1016/j.tre.2025.103997","DOIUrl":null,"url":null,"abstract":"<div><div>Public transport is a vital component of modern urban mobility, playing a significant role in reducing congestion and promoting environmental sustainability. Feeder bus services are essential for connecting residents to major public transport hubs, such as metro or rail stations. In this paper, a novel framework that enhances service coverage of the feeder bus while maintaining network efficiency is proposed. The framework integrates Multi-Agent Reinforcement Learning (MARL) to simulate and optimize route designs and frequency settings. Additionally, we introduce a Cost-based Competitive Coverage (CCC) Model to evaluate the performance of the feeder bus services by considering competition with other public transport modes. A case study conducted in two new towns in Hong Kong demonstrates the effectiveness and robustness of the proposed framework, highlighting its adaptability and potential to improve public transport accessibility.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"196 ","pages":"Article 103997"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525000389","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Public transport is a vital component of modern urban mobility, playing a significant role in reducing congestion and promoting environmental sustainability. Feeder bus services are essential for connecting residents to major public transport hubs, such as metro or rail stations. In this paper, a novel framework that enhances service coverage of the feeder bus while maintaining network efficiency is proposed. The framework integrates Multi-Agent Reinforcement Learning (MARL) to simulate and optimize route designs and frequency settings. Additionally, we introduce a Cost-based Competitive Coverage (CCC) Model to evaluate the performance of the feeder bus services by considering competition with other public transport modes. A case study conducted in two new towns in Hong Kong demonstrates the effectiveness and robustness of the proposed framework, highlighting its adaptability and potential to improve public transport accessibility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信