LESP:A fault-aware internet of things service placement in fog computing

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hemant Kumar Apat , Bibhudatta Sahoo
{"title":"LESP:A fault-aware internet of things service placement in fog computing","authors":"Hemant Kumar Apat ,&nbsp;Bibhudatta Sahoo","doi":"10.1016/j.suscom.2025.101097","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of 5G networks enables increase adoption of Industrial Internet of Things (IIoT) devices which introduces variety of time-sensitive applications requires low-latency, fault-tolerant, and energy-efficient computing environments. Fog computing infrastructure that extends cloud computing capabilities at the network edge to provide computation, communication, and storage resources. Due to the limited computing capacity of the Fog node, it restricts the number of tasks executed. The other key challenges are the risk of hardware and software failure during task execution. These failures tend to disrupt the configuration of fog computing nodes, affecting the reliability and availability of services. As a result, this can negatively impact the overall performance and service level objectives. The fault-tolerant-based IoT service placement problem in the fog computing environment primarily focuses on optimal placement of IoT services on fog and cloud resources with the objective of maximizing fault tolerance while satisfying network and storage capacity constraints. In this study, we compared different community-based techniques Girvan-Newman and Louvain with Integer Linear Programming (ILP) for fault tolerance in fog computing using the Albert-Barabási network model. In addition, it proposed a novel Louvian based on eigenvector centrality service placement (LESP) to improve conventional Louvian methods. The proposed algorithm is simulated in iFogSim2 simulator under three different scenario such as under 100, 200 and 300 nodes. The simulation results exemplify that LESP improves fault tolerance and energy efficiency, with an average improvement of approximately 20% over Girvan-Newman, 25% over ILP, and 12.33% over Louvain. These improvements underscore LESP’s strong efficiency and capability in improving service availability across a wide range of network configurations.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101097"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of 5G networks enables increase adoption of Industrial Internet of Things (IIoT) devices which introduces variety of time-sensitive applications requires low-latency, fault-tolerant, and energy-efficient computing environments. Fog computing infrastructure that extends cloud computing capabilities at the network edge to provide computation, communication, and storage resources. Due to the limited computing capacity of the Fog node, it restricts the number of tasks executed. The other key challenges are the risk of hardware and software failure during task execution. These failures tend to disrupt the configuration of fog computing nodes, affecting the reliability and availability of services. As a result, this can negatively impact the overall performance and service level objectives. The fault-tolerant-based IoT service placement problem in the fog computing environment primarily focuses on optimal placement of IoT services on fog and cloud resources with the objective of maximizing fault tolerance while satisfying network and storage capacity constraints. In this study, we compared different community-based techniques Girvan-Newman and Louvain with Integer Linear Programming (ILP) for fault tolerance in fog computing using the Albert-Barabási network model. In addition, it proposed a novel Louvian based on eigenvector centrality service placement (LESP) to improve conventional Louvian methods. The proposed algorithm is simulated in iFogSim2 simulator under three different scenario such as under 100, 200 and 300 nodes. The simulation results exemplify that LESP improves fault tolerance and energy efficiency, with an average improvement of approximately 20% over Girvan-Newman, 25% over ILP, and 12.33% over Louvain. These improvements underscore LESP’s strong efficiency and capability in improving service availability across a wide range of network configurations.
LESP:雾计算中的故障感知物联网服务布局
5G网络的快速发展使工业物联网(IIoT)设备的采用增加,这引入了各种时间敏感的应用,需要低延迟、容错和节能的计算环境。雾计算基础设施扩展了网络边缘的云计算功能,以提供计算、通信和存储资源。由于Fog节点的计算能力有限,因此限制了执行任务的数量。其他关键挑战是任务执行期间硬件和软件故障的风险。这些故障往往会破坏雾计算节点的配置,影响服务的可靠性和可用性。因此,这会对整体性能和服务水平目标产生负面影响。雾计算环境中基于容错的物联网服务布局问题主要关注物联网服务在雾和云资源上的优化布局,目标是在满足网络和存储容量约束的同时最大化容错能力。在这项研究中,我们使用Albert-Barabási网络模型比较了基于社区的Girvan-Newman和Louvain技术与整数线性规划(ILP)在雾计算中的容错能力。此外,针对传统的Louvian方法,提出了一种基于特征向量中心性服务放置(LESP)的Louvian方法。在iFogSim2仿真器中对该算法进行了100、200和300节点下的三种不同场景的仿真。仿真结果表明,LESP提高了容错性和能源效率,比Girvan-Newman平均提高了约20%,比ILP平均提高了25%,比Louvain平均提高了12.33%。这些改进强调了LESP在提高跨广泛网络配置的服务可用性方面的强大效率和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信