{"title":"Checkerboard cellular pattern in auditory epithelia: Implications for auditory function and sensory pathology","authors":"Hideru Togashi","doi":"10.1016/j.heares.2025.109220","DOIUrl":null,"url":null,"abstract":"<div><div>Sensory epithelia are composed of specialized cells arranged in specific patterns essential for function. The auditory epithelium of the organ of Corti features a highly conserved checkerboard pattern of mechanosensory hair and supporting cells, preventing direct hair cell contact and preserving epithelial integrity. In mice, disruption of this pattern results in deafness due to hair cell apoptosis caused by abnormal adherens and tight junction formation and structural fragility. This pattern is evolutionarily conserved across species, highlighting its functional significance. Direct hair cell contact, which normally does not occur, leads to abnormal adhesion molecule accumulation, altered ion permeability, and subsequent cell death. The checkerboard pattern likely evolved to optimize hair-supporting cell interactions while maintaining epithelial stability. This review explores the physiological significance of this cellular arrangement in auditory function and the consequences of its disruption, which leads to hearing loss. Understanding the mechanisms governing this pattern may provide insights into hearing disorders and potential therapeutic approaches.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"459 ","pages":"Article 109220"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595525000395","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory epithelia are composed of specialized cells arranged in specific patterns essential for function. The auditory epithelium of the organ of Corti features a highly conserved checkerboard pattern of mechanosensory hair and supporting cells, preventing direct hair cell contact and preserving epithelial integrity. In mice, disruption of this pattern results in deafness due to hair cell apoptosis caused by abnormal adherens and tight junction formation and structural fragility. This pattern is evolutionarily conserved across species, highlighting its functional significance. Direct hair cell contact, which normally does not occur, leads to abnormal adhesion molecule accumulation, altered ion permeability, and subsequent cell death. The checkerboard pattern likely evolved to optimize hair-supporting cell interactions while maintaining epithelial stability. This review explores the physiological significance of this cellular arrangement in auditory function and the consequences of its disruption, which leads to hearing loss. Understanding the mechanisms governing this pattern may provide insights into hearing disorders and potential therapeutic approaches.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.