Yuhang Song , Lingmin Zhao , Jiaonan Zhang , Jiaoling Zhang , Qingpi Yan
{"title":"Enhanced nitrogen removal through rapid biofilm formation by Paracoccus sp. XN-1 immobilized carriers in sequencing batch biofilm reactor","authors":"Yuhang Song , Lingmin Zhao , Jiaonan Zhang , Jiaoling Zhang , Qingpi Yan","doi":"10.1016/j.bej.2025.109678","DOIUrl":null,"url":null,"abstract":"<div><div>Biofilm formation is critical for wastewater treatment efficiency, but slow biofilm development often limits system startup and performance. In this study, a sequencing batch biofilm reactor (SBBR) was established to evaluate <em>Paracoccus</em> sp. XN-1's capability to accelerate biofilm formation for treating aquaculture wastewater. Results showed that XN-1 inoculation (T-SBR) significantly enhanced biofilm formation, achieving mature biofilm development within 36 days compared to 48 days in conventional activated sludge (SBR). This rapid startup is particularly valuable for aquaculture facilities that require efficient and stable wastewater treatment systems to maintain water quality during intensive farming. High-throughput sequencing revealed distinct microbial community structures between the two systems, with T-SBR showing enrichment of key functional groups, particularly <em>Methyloparacoccus</em> (4.8 %) and <em>Lysinibacillus</em> (21.4 %). Network analysis demonstrated complex ecological interactions within T-SBR, with <em>Methyloparacoccus</em> forming a central hub coordinating nitrogen transformation processes. Functional prediction indicated enhanced nitrogen metabolism and oxidative phosphorylation pathways in T-SBR, contributing to superior NH<sub>4</sub><sup>+</sup>-N (99.27 %) and TN (83.14 %) removal efficiencies. These results demonstrate that XN-1 inoculation optimizes microbial community assembly for enhanced nitrogen removal, providing a practical solution for sustainable aquaculture wastewater treatment.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"217 ","pages":"Article 109678"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000518","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm formation is critical for wastewater treatment efficiency, but slow biofilm development often limits system startup and performance. In this study, a sequencing batch biofilm reactor (SBBR) was established to evaluate Paracoccus sp. XN-1's capability to accelerate biofilm formation for treating aquaculture wastewater. Results showed that XN-1 inoculation (T-SBR) significantly enhanced biofilm formation, achieving mature biofilm development within 36 days compared to 48 days in conventional activated sludge (SBR). This rapid startup is particularly valuable for aquaculture facilities that require efficient and stable wastewater treatment systems to maintain water quality during intensive farming. High-throughput sequencing revealed distinct microbial community structures between the two systems, with T-SBR showing enrichment of key functional groups, particularly Methyloparacoccus (4.8 %) and Lysinibacillus (21.4 %). Network analysis demonstrated complex ecological interactions within T-SBR, with Methyloparacoccus forming a central hub coordinating nitrogen transformation processes. Functional prediction indicated enhanced nitrogen metabolism and oxidative phosphorylation pathways in T-SBR, contributing to superior NH4+-N (99.27 %) and TN (83.14 %) removal efficiencies. These results demonstrate that XN-1 inoculation optimizes microbial community assembly for enhanced nitrogen removal, providing a practical solution for sustainable aquaculture wastewater treatment.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.