Fatemah S. Sunbul , Rashed M. Almuqbil , Hanming Zhang , Sulaiman S. Alhudaithi , Matthew E. Fernandez , Raneem R. Aldaqqa , Victoria A. Garcia , Valentina Robila , Matthew S. Halquist , Sarah W. Gordon , Paula D. Bos , Sandro R.P. da Rocha
{"title":"An improved experimental model of osteosarcoma lung metastases to investigate innovative therapeutic interventions and sex as a biological variable","authors":"Fatemah S. Sunbul , Rashed M. Almuqbil , Hanming Zhang , Sulaiman S. Alhudaithi , Matthew E. Fernandez , Raneem R. Aldaqqa , Victoria A. Garcia , Valentina Robila , Matthew S. Halquist , Sarah W. Gordon , Paula D. Bos , Sandro R.P. da Rocha","doi":"10.1016/j.ijpharm.2025.125372","DOIUrl":null,"url":null,"abstract":"<div><div>Osteosarcoma (OS) is the most common primary bone malignancy, with OS lung metastasis (OSLM) being the leading cause of death in OS patients. No curative pharmacotherapies for OSLM are available, highlighting the clinical need for new therapies. Improved and rigorous preclinical models of OSLM are key in supporting advancements in this field. We aimed to develop an immunocompetent mouse model of OSLM that allows monitoring pharmacotherapies’ effect on the lung metastatic burden over time and assessing the impact of sex as a biological variable in tumor growth and response to therapy. We transformed K7M2 cells to express bioluminescence and fluorescence, enabling real-time tracking of OSLM in BALB/c mice following tail vein injection. Metastasis was confined to the lungs and exhibited exponential growth with typical downregulated Fas receptor expression. <em>In vivo</em> bioluminescence correlated strongly with ex vivo, suggesting its reliability for evaluating metastatic progression and therapy response. Fluorescence from tdT was stable upon tissue processing, providing unique opportunities to probe the tumor characteristics ex vivo. We also assessed the effect of local lung-delivered gemcitabine, which was well-tolerated and significantly reduced OSLM burden without causing pulmonary toxicity. However, treatment did not resolve metastatic disease. We also explored the effect of sex on tumor growth and response to therapy; while no difference was observed in tumor growth between male and female mice, females showed a better response to local gemcitabine administration. In sum, we established a robust and rigorous immunocompetent mouse model of OSLM that will facilitate exploring new pharmacotherapies for OSLM.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"673 ","pages":"Article 125372"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732500208X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, with OS lung metastasis (OSLM) being the leading cause of death in OS patients. No curative pharmacotherapies for OSLM are available, highlighting the clinical need for new therapies. Improved and rigorous preclinical models of OSLM are key in supporting advancements in this field. We aimed to develop an immunocompetent mouse model of OSLM that allows monitoring pharmacotherapies’ effect on the lung metastatic burden over time and assessing the impact of sex as a biological variable in tumor growth and response to therapy. We transformed K7M2 cells to express bioluminescence and fluorescence, enabling real-time tracking of OSLM in BALB/c mice following tail vein injection. Metastasis was confined to the lungs and exhibited exponential growth with typical downregulated Fas receptor expression. In vivo bioluminescence correlated strongly with ex vivo, suggesting its reliability for evaluating metastatic progression and therapy response. Fluorescence from tdT was stable upon tissue processing, providing unique opportunities to probe the tumor characteristics ex vivo. We also assessed the effect of local lung-delivered gemcitabine, which was well-tolerated and significantly reduced OSLM burden without causing pulmonary toxicity. However, treatment did not resolve metastatic disease. We also explored the effect of sex on tumor growth and response to therapy; while no difference was observed in tumor growth between male and female mice, females showed a better response to local gemcitabine administration. In sum, we established a robust and rigorous immunocompetent mouse model of OSLM that will facilitate exploring new pharmacotherapies for OSLM.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.