Paired electrochemical synthesis of Cl2 from alkali chloride and CO from CO2

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Jan Vehrenberg , Georg Gert , Maren Grosseheide , Matthias Wessling , Robert Keller
{"title":"Paired electrochemical synthesis of Cl2 from alkali chloride and CO from CO2","authors":"Jan Vehrenberg ,&nbsp;Georg Gert ,&nbsp;Maren Grosseheide ,&nbsp;Matthias Wessling ,&nbsp;Robert Keller","doi":"10.1016/j.cep.2025.110209","DOIUrl":null,"url":null,"abstract":"<div><div>In order to bring electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R) to economical feasibility on an industrial scale, the conventional oxygen evolution reaction (OER) can be replaced with a value added reaction. In this work, we replace OER with chlorine evolution reaction (CER) in a paired synthesis with CO from CO<sub>2</sub>. Hereby, the reaction system is assessed at industrial relevant current densities with respect to electrolyte species &amp; concentration and stability of up to 24 h. We report constant anodic FEs to Cl<sub>2</sub> of <span><math><mo>&gt;</mo></math></span>97<span><math><mtext>%</mtext></math></span> for up to 400 <span><math><mrow><mi>mA</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> with concurrent FEs to CO of 90<span><math><mtext>%</mtext></math></span> at 100 <span><math><mrow><mi>mA</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and 74<span><math><mtext>%</mtext></math></span> at 200 <span><math><mrow><mi>mA</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> over 4.5 h, significantly exceeding previous studies for comparable systems. The FE for CER did not show any decline over 24 h of operation. KCl showed superior results over NaCl and CsCl in terms of cathodic FE and cell potential. CER is affected by educt limitation with FE dropping below 95<span><math><mtext>%</mtext></math></span> at an electrolyte concentration of 0.8 mol/L at 400 <span><math><mrow><mi>mA</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. By successfully pairing eCO<sub>2</sub>R and CER with stable and high FEs at industrially relevant current densities, this work marks an important step towards an industrial application.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"211 ","pages":"Article 110209"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000583","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to bring electrochemical CO2 reduction (eCO2R) to economical feasibility on an industrial scale, the conventional oxygen evolution reaction (OER) can be replaced with a value added reaction. In this work, we replace OER with chlorine evolution reaction (CER) in a paired synthesis with CO from CO2. Hereby, the reaction system is assessed at industrial relevant current densities with respect to electrolyte species & concentration and stability of up to 24 h. We report constant anodic FEs to Cl2 of >97% for up to 400 mA/cm2 with concurrent FEs to CO of 90% at 100 mA/cm2 and 74% at 200 mA/cm2 over 4.5 h, significantly exceeding previous studies for comparable systems. The FE for CER did not show any decline over 24 h of operation. KCl showed superior results over NaCl and CsCl in terms of cathodic FE and cell potential. CER is affected by educt limitation with FE dropping below 95% at an electrolyte concentration of 0.8 mol/L at 400 mA/cm2. By successfully pairing eCO2R and CER with stable and high FEs at industrially relevant current densities, this work marks an important step towards an industrial application.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信