Extreme current density and breakdown mechanism in graphene on diamond substrate

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Daria Belotcerkovtceva , Gopal Datt , Henry Nameirakpam , Aisuluu Aitkulova , Nattakarn Suntornwipat , Saman Majdi , Jan Isberg , M. Venkata Kamalakar
{"title":"Extreme current density and breakdown mechanism in graphene on diamond substrate","authors":"Daria Belotcerkovtceva ,&nbsp;Gopal Datt ,&nbsp;Henry Nameirakpam ,&nbsp;Aisuluu Aitkulova ,&nbsp;Nattakarn Suntornwipat ,&nbsp;Saman Majdi ,&nbsp;Jan Isberg ,&nbsp;M. Venkata Kamalakar","doi":"10.1016/j.carbon.2025.120108","DOIUrl":null,"url":null,"abstract":"<div><div>The high current-carrying capacity of graphene is essential for its use as an interconnect in electronic and spintronic circuits. At the same time, knowing the breakdown limits and mechanism under high fields can enable new device design strategies. In this work, we push the current carrying capacity of the scalable form of chemical vapor deposited (CVD) graphene employing a high-thermal conducting single crystalline diamond substrate. Our experiments on CVD graphene reveal extremely high current densities &gt; 10<sup>9</sup> A/cm<sup>2</sup> in graphene on the diamond with both ohmic (low-resistive) and tunneling (high-resistive) contacts. Measurements on ferromagnetic (TiO<sub>x</sub>/Co) and metallic (Ti/Au) contacts demonstrate current densities of ∼1.16 × 10<sup>9</sup> A/cm<sup>2</sup> and ∼1.7 × 10<sup>9</sup> A/cm<sup>2</sup>, respectively. The tunnel (high-resistive) contacts exhibit a shunting of graphene under high currents via the bottom graphitized diamond, resulting in dielectric breakdown and via alternative conducting paths. Electrical measurements show a distinct threshold for conducting paths of graphitized diamond, in tune accordance with Middleton-Wingreen's theory. Our results of high current densities achieved in CVD graphene, with distinct dependence on ohmic and tunneling, contact resistance, and the observed breakdown mechanism, provide new insights for enabling high-current all carbon circuits.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"237 ","pages":"Article 120108"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325001241","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high current-carrying capacity of graphene is essential for its use as an interconnect in electronic and spintronic circuits. At the same time, knowing the breakdown limits and mechanism under high fields can enable new device design strategies. In this work, we push the current carrying capacity of the scalable form of chemical vapor deposited (CVD) graphene employing a high-thermal conducting single crystalline diamond substrate. Our experiments on CVD graphene reveal extremely high current densities > 109 A/cm2 in graphene on the diamond with both ohmic (low-resistive) and tunneling (high-resistive) contacts. Measurements on ferromagnetic (TiOx/Co) and metallic (Ti/Au) contacts demonstrate current densities of ∼1.16 × 109 A/cm2 and ∼1.7 × 109 A/cm2, respectively. The tunnel (high-resistive) contacts exhibit a shunting of graphene under high currents via the bottom graphitized diamond, resulting in dielectric breakdown and via alternative conducting paths. Electrical measurements show a distinct threshold for conducting paths of graphitized diamond, in tune accordance with Middleton-Wingreen's theory. Our results of high current densities achieved in CVD graphene, with distinct dependence on ohmic and tunneling, contact resistance, and the observed breakdown mechanism, provide new insights for enabling high-current all carbon circuits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信