Optimization and Analysis of Holistic Wastewater Reusing and Treatment Strategies in Shale Gas Hydraulic Fracturing: A Case Study in Sichuan, China

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjin Zhou, Kashif Iqbal, Fuyu Liu, Chun Deng
{"title":"Optimization and Analysis of Holistic Wastewater Reusing and Treatment Strategies in Shale Gas Hydraulic Fracturing: A Case Study in Sichuan, China","authors":"Wenjin Zhou, Kashif Iqbal, Fuyu Liu, Chun Deng","doi":"10.1021/acssuschemeng.4c10420","DOIUrl":null,"url":null,"abstract":"With the evolution of hydraulic fracturing technology, shale gas development in China’s Sichuan region has become commercialized and highly active. This process consumes a substantial amount of water, currently primarily sourced from rivers and the direct reuse of flowback water. However, there is a lack of systematic water resource management, leading to high water usage per well and potentially significant adverse impacts on the regional ecosystem. This paper proposes an optimization-based water management model for shale gas development, focusing on total dissolved solids (TDS) as the key pollutant. The model considers three wastewater treatment methods: onsite treatment, commercial treatment centers, and reinjection wells, along with wastewater reuse among well pads. The model accounts for geographic factors, treatment capacities, and wastewater composition, ensuring a comprehensive approach to wastewater management in shale gas development. A case study was conducted on three well pads in the Weiyuan shale gas block in Sichuan. The results show that onsite desalination and wastewater reuse between well pads can significantly reduce water management costs and freshwater consumption. Due to geographic factors, such as the mountainous terrain and distance from existing treatment facilities, commercial treatment centers and reinjection wells are not suggested. The average optimized single-well freshwater consumption in Weiyuan is 15,078 m<sup>3</sup>, which is comparable to the Eagle Ford site’s average of 16,100 m<sup>3</sup> in Texas, USA, but significantly lower than the average of 24,415 m<sup>3</sup> in Sichuan.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"15 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c10420","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the evolution of hydraulic fracturing technology, shale gas development in China’s Sichuan region has become commercialized and highly active. This process consumes a substantial amount of water, currently primarily sourced from rivers and the direct reuse of flowback water. However, there is a lack of systematic water resource management, leading to high water usage per well and potentially significant adverse impacts on the regional ecosystem. This paper proposes an optimization-based water management model for shale gas development, focusing on total dissolved solids (TDS) as the key pollutant. The model considers three wastewater treatment methods: onsite treatment, commercial treatment centers, and reinjection wells, along with wastewater reuse among well pads. The model accounts for geographic factors, treatment capacities, and wastewater composition, ensuring a comprehensive approach to wastewater management in shale gas development. A case study was conducted on three well pads in the Weiyuan shale gas block in Sichuan. The results show that onsite desalination and wastewater reuse between well pads can significantly reduce water management costs and freshwater consumption. Due to geographic factors, such as the mountainous terrain and distance from existing treatment facilities, commercial treatment centers and reinjection wells are not suggested. The average optimized single-well freshwater consumption in Weiyuan is 15,078 m3, which is comparable to the Eagle Ford site’s average of 16,100 m3 in Texas, USA, but significantly lower than the average of 24,415 m3 in Sichuan.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信