{"title":"Catalysis Enhanced by Catalyst Wettability","authors":"Yu Hui, Liang Wang, Feng-Shou Xiao","doi":"10.1021/acsnano.4c18150","DOIUrl":null,"url":null,"abstract":"Heterogeneous catalysis is a surface phenomenon where the adsorption, desorption, and transfer of reactants and products are critical for catalytic performance. Recent results show that catalyst wettability is strongly related to the adsorption, desorption, and transfer of reactants and products. In this review, we briefly summarize strategies for regulating wettability to enrich reactants, accelerate the desorption of products, and promote mass transfer in heterogeneous catalysis. In addition, we explore insights into catalyst wettability for the enhancement of catalytic performance. Finally, the concerns and challenges in this subject are outlined, and practical strategies are proposed for the regulation of catalyst wettability. We hope that this review will be helpful for designing highly efficient heterogeneous catalysts in the future.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"25 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous catalysis is a surface phenomenon where the adsorption, desorption, and transfer of reactants and products are critical for catalytic performance. Recent results show that catalyst wettability is strongly related to the adsorption, desorption, and transfer of reactants and products. In this review, we briefly summarize strategies for regulating wettability to enrich reactants, accelerate the desorption of products, and promote mass transfer in heterogeneous catalysis. In addition, we explore insights into catalyst wettability for the enhancement of catalytic performance. Finally, the concerns and challenges in this subject are outlined, and practical strategies are proposed for the regulation of catalyst wettability. We hope that this review will be helpful for designing highly efficient heterogeneous catalysts in the future.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.