{"title":"A μGal MOEMS gravimeter designed with free-form anti-springs","authors":"Shuang Wu, Wenhui Yan, Xiaoxu Wang, Qingxiong Xiao, Zhenshan Wang, Jiaxin Sun, Xinlong Yu, Yaoxian Yang, Qixuan Zhu, Guantai Yang, Zhongyang Yao, Pengfei Li, Chao Jiang, Wei Huang, Qianbo Lu","doi":"10.1038/s41467-025-57176-z","DOIUrl":null,"url":null,"abstract":"<p>Gravimeter measures gravitational acceleration, which is valuable for geophysical applications such as hazard forecasting and prospecting. Gravimeters have historically been large and expensive instruments. Micro-Electro-Mechanical-System gravimeters feature small size and low cost through scaling and integration, which may allow large-scale deployment. However, current Micro-Electro-Mechanical-System gravimeters face challenges in achieving ultra-high sensitivity under fabrication tolerance and limited size. Here, we demonstrate a μGal-level Micro-Opto-Electro-Mechanical-System gravimeter by combining a freeform anti-spring design and an optical readout. A multi-stage algorithmic design approach is proposed to achieve high acceleration sensitivity without making high-aspect ratio springs. An optical grating-based readout is integrated, offering pm-level displacement sensitivity. Measurements reveal that the chip-scale sensing unit achieves a resonant frequency of 1.71 Hz and acceleration-displacement sensitivity of over 95 μm/Gal with an etching aspect ratio of smaller than 400:30. The benchmark with a commercial gravimeter PET demonstrates a self-noise of 1.1 μGal Hz<sup>−1/2</sup> at 0.5 Hz, sub-1 μGal Hz<sup>−1/2</sup> at 0.45 Hz, and a drift rate down to 153 μGal/day. The high performance and small size of the Micro-Opto-Electro-Mechanical-System gravimeter suggest potential applications in industrial, defense, and geophysics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57176-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gravimeter measures gravitational acceleration, which is valuable for geophysical applications such as hazard forecasting and prospecting. Gravimeters have historically been large and expensive instruments. Micro-Electro-Mechanical-System gravimeters feature small size and low cost through scaling and integration, which may allow large-scale deployment. However, current Micro-Electro-Mechanical-System gravimeters face challenges in achieving ultra-high sensitivity under fabrication tolerance and limited size. Here, we demonstrate a μGal-level Micro-Opto-Electro-Mechanical-System gravimeter by combining a freeform anti-spring design and an optical readout. A multi-stage algorithmic design approach is proposed to achieve high acceleration sensitivity without making high-aspect ratio springs. An optical grating-based readout is integrated, offering pm-level displacement sensitivity. Measurements reveal that the chip-scale sensing unit achieves a resonant frequency of 1.71 Hz and acceleration-displacement sensitivity of over 95 μm/Gal with an etching aspect ratio of smaller than 400:30. The benchmark with a commercial gravimeter PET demonstrates a self-noise of 1.1 μGal Hz−1/2 at 0.5 Hz, sub-1 μGal Hz−1/2 at 0.45 Hz, and a drift rate down to 153 μGal/day. The high performance and small size of the Micro-Opto-Electro-Mechanical-System gravimeter suggest potential applications in industrial, defense, and geophysics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.