STANCE: a unified statistical model to detect cell-type-specific spatially variable genes in spatial transcriptomics

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haohao Su, Yuesong Wu, Bin Chen, Yuehua Cui
{"title":"STANCE: a unified statistical model to detect cell-type-specific spatially variable genes in spatial transcriptomics","authors":"Haohao Su, Yuesong Wu, Bin Chen, Yuehua Cui","doi":"10.1038/s41467-025-57117-w","DOIUrl":null,"url":null,"abstract":"<p>One of the major challenges in spatial transcriptomics is to detect spatially variable genes (SVGs), whose expression patterns are non-random across tissue locations. Many SVGs correlate with cell type compositions, introducing the concept of cell type-specific SVGs (ctSVGs). Existing ctSVG detection methods treat cell type-specific spatial effects as fixed effects, leading to tissue spatial rotation-dependent results. Moreover, SVGs may exhibit random spatial patterns within cell types, meaning an SVG is not always a ctSVG, and vice versa, further complicating detection. We propose STANCE, a unified statistical model for both SVGs and ctSVGs detection under a linear mixed-effect model framework that integrates gene expression, spatial location, and cell type composition information. STANCE ensures tissue rotation-invariant results, with a two-stage approach: initial SVG/ctSVG detection followed by ctSVG-specific testing. We demonstrate its performance through extensive simulations and analyses of public datasets. Downstream analyses reveal STANCE’s potential in spatial transcriptomics analysis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57117-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenges in spatial transcriptomics is to detect spatially variable genes (SVGs), whose expression patterns are non-random across tissue locations. Many SVGs correlate with cell type compositions, introducing the concept of cell type-specific SVGs (ctSVGs). Existing ctSVG detection methods treat cell type-specific spatial effects as fixed effects, leading to tissue spatial rotation-dependent results. Moreover, SVGs may exhibit random spatial patterns within cell types, meaning an SVG is not always a ctSVG, and vice versa, further complicating detection. We propose STANCE, a unified statistical model for both SVGs and ctSVGs detection under a linear mixed-effect model framework that integrates gene expression, spatial location, and cell type composition information. STANCE ensures tissue rotation-invariant results, with a two-stage approach: initial SVG/ctSVG detection followed by ctSVG-specific testing. We demonstrate its performance through extensive simulations and analyses of public datasets. Downstream analyses reveal STANCE’s potential in spatial transcriptomics analysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信