A nanotwinned-alloy strategy enables fast sodium deposition dynamics

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guodong Zou, Jinming Wang, Yong Sun, Weihao Yang, Tingting Niu, Jinyu Li, Liqun Ren, Zhi Wei Seh, Qiuming Peng
{"title":"A nanotwinned-alloy strategy enables fast sodium deposition dynamics","authors":"Guodong Zou, Jinming Wang, Yong Sun, Weihao Yang, Tingting Niu, Jinyu Li, Liqun Ren, Zhi Wei Seh, Qiuming Peng","doi":"10.1038/s41467-025-56957-w","DOIUrl":null,"url":null,"abstract":"<p>Sodium (Na) metal batteries are considered promising solutions for next-generation electrochemical energy storage because of their low costs and high energy densities. However, the slow Na dynamics result in unfavorable Na deposition and dendrite growth, which compromise cycling performance. Here we propose a nanotwinned alloy strategy prepared by high-pressure solid solution followed by Joule-heating treatment to address sluggish Na dynamics, achieving homogeneous Na deposition. By employing cost-effective Al-Si alloys for validation, Si solubility of 10 wt.% is extended through a high-pressure solid solution, and nanotwinned-Si particles, with a volume fraction of 82.7%, are subsequently formed through Joule-heating treatment. The sodiophilic nanotwinned-Si sites exhibit a high diffusion rate, which reduces the nondimensional electrochemical Damköhler number to far below 1, shifting the diffusion-controlled deposition behavior to reaction-controlled deposition. This transition facilitates spherical Na deposition and dendrite-free growth, allowing a symmetric cell to achieve stable Na plating/stripping over 5300 h at 5 mA cm<sup>−2</sup> with a cumulative capacity of 13.25 Ah cm<sup>−2</sup>. This strategy is also demonstrated in another CuAg system with nanotwinned Ag structures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56957-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium (Na) metal batteries are considered promising solutions for next-generation electrochemical energy storage because of their low costs and high energy densities. However, the slow Na dynamics result in unfavorable Na deposition and dendrite growth, which compromise cycling performance. Here we propose a nanotwinned alloy strategy prepared by high-pressure solid solution followed by Joule-heating treatment to address sluggish Na dynamics, achieving homogeneous Na deposition. By employing cost-effective Al-Si alloys for validation, Si solubility of 10 wt.% is extended through a high-pressure solid solution, and nanotwinned-Si particles, with a volume fraction of 82.7%, are subsequently formed through Joule-heating treatment. The sodiophilic nanotwinned-Si sites exhibit a high diffusion rate, which reduces the nondimensional electrochemical Damköhler number to far below 1, shifting the diffusion-controlled deposition behavior to reaction-controlled deposition. This transition facilitates spherical Na deposition and dendrite-free growth, allowing a symmetric cell to achieve stable Na plating/stripping over 5300 h at 5 mA cm−2 with a cumulative capacity of 13.25 Ah cm−2. This strategy is also demonstrated in another CuAg system with nanotwinned Ag structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信