Ribosomal pentapeptide nitration for non-ribosomal peptide antibiotic precursor biosynthesis

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-02-20 DOI:10.1016/j.chempr.2025.102438
Leo Padva, Lukas Zimmer, Jemma Gullick, Yongwei Zhao, Vishnu Mini Sasi, Ralf B. Schittenhelm, Colin J. Jackson, Max J. Cryle, Max Crüsemann
{"title":"Ribosomal pentapeptide nitration for non-ribosomal peptide antibiotic precursor biosynthesis","authors":"Leo Padva, Lukas Zimmer, Jemma Gullick, Yongwei Zhao, Vishnu Mini Sasi, Ralf B. Schittenhelm, Colin J. Jackson, Max J. Cryle, Max Crüsemann","doi":"10.1016/j.chempr.2025.102438","DOIUrl":null,"url":null,"abstract":"Peptide natural products possess a fascinating array of complex structures and diverse biological activities. Central to this is a repertoire of structurally modified amino acid building blocks, which stem from fundamentally different biosynthetic pathways for peptides of non-ribosomal and ribosomal origins. Given these origins, the integration of non-ribosomal and ribosomal peptide biosynthesis has previously been thought implausible. Now, we report how nature has synergized ribosomal and non-ribosomal peptide pathways in the biosynthesis of the rufomycins, exceptionally potent antitubercular antibiotics. In this pathway, a biarylitide-type ribosomal pentapeptide precursor is nitrated by a modified cytochrome P450 biaryl-crosslinking enzyme. The nitrated residue, key for antibiotic activity, is liberated by a dedicated protease before activation and peptide incorporation by the non-ribosomal rufomycin synthetase assembly line. This resolves the enigmatic origins of 3-nitrotyrosine within rufomycin biosynthesis and unveils a novel function for ribosomally synthesized peptides as templates for biosynthesis of modified non-ribosomal peptide building blocks.","PeriodicalId":268,"journal":{"name":"Chem","volume":"15 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102438","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide natural products possess a fascinating array of complex structures and diverse biological activities. Central to this is a repertoire of structurally modified amino acid building blocks, which stem from fundamentally different biosynthetic pathways for peptides of non-ribosomal and ribosomal origins. Given these origins, the integration of non-ribosomal and ribosomal peptide biosynthesis has previously been thought implausible. Now, we report how nature has synergized ribosomal and non-ribosomal peptide pathways in the biosynthesis of the rufomycins, exceptionally potent antitubercular antibiotics. In this pathway, a biarylitide-type ribosomal pentapeptide precursor is nitrated by a modified cytochrome P450 biaryl-crosslinking enzyme. The nitrated residue, key for antibiotic activity, is liberated by a dedicated protease before activation and peptide incorporation by the non-ribosomal rufomycin synthetase assembly line. This resolves the enigmatic origins of 3-nitrotyrosine within rufomycin biosynthesis and unveils a novel function for ribosomally synthesized peptides as templates for biosynthesis of modified non-ribosomal peptide building blocks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信