Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Thorvaldson, D. Poulos, C. M. Moehle, S. H. Misha, H. Edlbauer, J. Reiner, H. Geng, B. Voisin, M. T. Jones, M. B. Donnelly, L. F. Peña, C. D. Hill, C. R. Myers, J. G. Keizer, Y. Chung, S. K. Gorman, L. Kranz, M. Y. Simmons
{"title":"Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold","authors":"I. Thorvaldson, D. Poulos, C. M. Moehle, S. H. Misha, H. Edlbauer, J. Reiner, H. Geng, B. Voisin, M. T. Jones, M. B. Donnelly, L. F. Peña, C. D. Hill, C. R. Myers, J. G. Keizer, Y. Chung, S. K. Gorman, L. Kranz, M. Y. Simmons","doi":"10.1038/s41565-024-01853-5","DOIUrl":null,"url":null,"abstract":"<p>Spin qubits in silicon are strong contenders for the realization of a practical quantum computer. Single- and two-qubit gates have shown fidelities above the fault-tolerant threshold, and entanglement of three qubits has been achieved. Furthermore, high-fidelity operation of two-qubit algorithms is possible. Here we implement a four-qubit silicon processor with all control fidelities above the fault-tolerant threshold. We demonstrate a three-qubit Grover’s search algorithm with a ~95% probability of finding the marked state. To this end, we fabricate the processor from three phosphorus atoms precision-patterned into isotopically pure silicon. We define three phosphorus nuclear spin qubits and one electron spin qubit. The long coherence times of the qubits enable single-qubit fidelities above 99.9% for all qubits. Moreover, the efficient single-pulse multi-qubit operation enabled by the electron–nuclear hyperfine interaction facilitates controlled-<i>Z</i> gates with above 99% fidelity between all pairs of nuclear spins when using the electron as an ancilla. These control fidelities, combined with high-fidelity non-demolition readout of all nuclear spins, allows the creation of a three-qubit Greenberger–Horne–Zeilinger state with 96.2% fidelity. Looking ahead, coupling neighbouring nuclear spin registers, as the one shown here, via electron–electron exchange may enable larger, yet fault-tolerant, quantum processors.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01853-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin qubits in silicon are strong contenders for the realization of a practical quantum computer. Single- and two-qubit gates have shown fidelities above the fault-tolerant threshold, and entanglement of three qubits has been achieved. Furthermore, high-fidelity operation of two-qubit algorithms is possible. Here we implement a four-qubit silicon processor with all control fidelities above the fault-tolerant threshold. We demonstrate a three-qubit Grover’s search algorithm with a ~95% probability of finding the marked state. To this end, we fabricate the processor from three phosphorus atoms precision-patterned into isotopically pure silicon. We define three phosphorus nuclear spin qubits and one electron spin qubit. The long coherence times of the qubits enable single-qubit fidelities above 99.9% for all qubits. Moreover, the efficient single-pulse multi-qubit operation enabled by the electron–nuclear hyperfine interaction facilitates controlled-Z gates with above 99% fidelity between all pairs of nuclear spins when using the electron as an ancilla. These control fidelities, combined with high-fidelity non-demolition readout of all nuclear spins, allows the creation of a three-qubit Greenberger–Horne–Zeilinger state with 96.2% fidelity. Looking ahead, coupling neighbouring nuclear spin registers, as the one shown here, via electron–electron exchange may enable larger, yet fault-tolerant, quantum processors.

Abstract Image

格罗弗算法在四量子位硅处理器中的容错阈值以上
硅中的自旋量子比特是实现实用量子计算机的有力竞争者。单量子位和双量子位门显示出高于容错阈值的保真度,并且实现了三个量子位的纠缠。此外,还可以实现双量子比特算法的高保真运算。在这里,我们实现了一个四量子位硅处理器,其所有控制保真度都高于容错阈值。我们演示了一种三量子位格罗弗搜索算法,其找到标记状态的概率为~95%。为此,我们将三个磷原子精确地制作成同位素纯硅的处理器。我们定义了三个磷核自旋量子比特和一个电子自旋量子比特。量子位的长相干时间使所有量子位的单量子位保真度超过99.9%。此外,当使用电子作为辅助时,电子-核超精细相互作用所实现的高效单脉冲多量子位操作使得所有核自旋对之间的受控z门具有99%以上的保真度。这些控制保真度与所有核自旋的高保真度非破坏读数相结合,可以创建具有96.2%保真度的三量子位格林伯格-霍恩-塞林格状态。展望未来,通过电子-电子交换耦合相邻的核自旋寄存器(如图所示)可能会实现更大、更容错的量子处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信