Aquatic deoxygenation associated with resuspension of anthropogenic organic matter

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Bartolomé Morote-Sánchez , Jordi Colomer , Marianna Soler , Javier Gilabert , Valentí Rodellas , Jordi Garcia-Orellana , Teresa Serra
{"title":"Aquatic deoxygenation associated with resuspension of anthropogenic organic matter","authors":"Bartolomé Morote-Sánchez ,&nbsp;Jordi Colomer ,&nbsp;Marianna Soler ,&nbsp;Javier Gilabert ,&nbsp;Valentí Rodellas ,&nbsp;Jordi Garcia-Orellana ,&nbsp;Teresa Serra","doi":"10.1016/j.watres.2025.123327","DOIUrl":null,"url":null,"abstract":"<div><div>Aquatic environments are highly polluted due to the anthropogenic pressures associated with large populations. Among these ecosystems, coastal lagoons are particularly sensitive to anthropogenic disturbances. The Mar Menor is an example of such an ecosystem, with an extremely degraded status with high levels of anthropogenic eutrophication. As a consequence, reduced dissolved oxygen levels have been observed in this lagoon following episodic wind events that induce mixing and resuspension of bottom sediments, leading to catastrophic consequences for fish populations. Therefore, understanding the processes that control the oxygen depletion in lagoon waters is thus essential to appropriately manage the ecosystem. This study analyses oxygen consumption in the water column associated with sediment resuspension events induced by wind. The study was carried out in a laboratory, where mixing was induced using an oscillating grid device. The range of mixing intensities were selected to be close to the turbulence encountered in the lagoon's field conditions. The resuspended sediment used for the experiments had been taken from the bed of the Mar Menor at three sampling sites. The results of this study indicate that oxygen depletion in the water column during mixing increases with the amount of sediment resuspended, the mean diameter of the particles and the organic matter content in the sediment bed. Data on oxygen depletion in coastal lagoons, estuaries, seas, and reservoirs were then used to develop a predictive model for oxygen depletion, based on the concentration of resuspended sediment, its characteristic particle diameter, and the organic matter content of the sediment bed. Organic matter content was found to be the most significant factor contributing to oxygen depletion. The resulting model determines the oxygen depletion associated to sediment resuspension events with sediments affected by anthropogenic eutrophication.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"278 ","pages":"Article 123327"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425002416","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aquatic environments are highly polluted due to the anthropogenic pressures associated with large populations. Among these ecosystems, coastal lagoons are particularly sensitive to anthropogenic disturbances. The Mar Menor is an example of such an ecosystem, with an extremely degraded status with high levels of anthropogenic eutrophication. As a consequence, reduced dissolved oxygen levels have been observed in this lagoon following episodic wind events that induce mixing and resuspension of bottom sediments, leading to catastrophic consequences for fish populations. Therefore, understanding the processes that control the oxygen depletion in lagoon waters is thus essential to appropriately manage the ecosystem. This study analyses oxygen consumption in the water column associated with sediment resuspension events induced by wind. The study was carried out in a laboratory, where mixing was induced using an oscillating grid device. The range of mixing intensities were selected to be close to the turbulence encountered in the lagoon's field conditions. The resuspended sediment used for the experiments had been taken from the bed of the Mar Menor at three sampling sites. The results of this study indicate that oxygen depletion in the water column during mixing increases with the amount of sediment resuspended, the mean diameter of the particles and the organic matter content in the sediment bed. Data on oxygen depletion in coastal lagoons, estuaries, seas, and reservoirs were then used to develop a predictive model for oxygen depletion, based on the concentration of resuspended sediment, its characteristic particle diameter, and the organic matter content of the sediment bed. Organic matter content was found to be the most significant factor contributing to oxygen depletion. The resulting model determines the oxygen depletion associated to sediment resuspension events with sediments affected by anthropogenic eutrophication.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信