Could the Neutrino Emission of TXS 0506+056 Come from the Accretion Flow of the Supermassive Black Hole?

Qi-Rui Yang, Ruo-Yu Liu and Xiang-Yu Wang
{"title":"Could the Neutrino Emission of TXS 0506+056 Come from the Accretion Flow of the Supermassive Black Hole?","authors":"Qi-Rui Yang, Ruo-Yu Liu and Xiang-Yu Wang","doi":"10.3847/1538-4357/adaea4","DOIUrl":null,"url":null,"abstract":"High-energy neutrinos from the blazar TXS 0506+056 are usually thought to arise from the relativistic jet pointing to us. However, the composition of jets of active galactic nuclei (AGNs), whether they are baryon dominated or Poynting flux dominated, is largely unknown. In the latter case, no comic rays and neutrinos would be expected from the AGN jets. In this work, we study whether the neutrino emission from TXS 0506+056 could be powered by the accretion flow of the supermassive black hole. Protons could be accelerated by magnetic reconnection or turbulence in the inner accretion flow. To explain the neutrino flare of TXS 0506+056 in the years 2014–2015, a super-Eddington accretion is needed. During the steady state, a sub-Eddington accretion flow could power a steady neutrino emission that may explain the long-term neutrino flux from TXS 0506+056. We consider the neutrino production in both magnetically arrested accretion (MAD) flow and the standard and normal evolution (SANE) regime of accretion. In the MAD scenario, due to a high magnetic field, a large dissipation radius is required to avoid the cooling of protons and secondary pions.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adaea4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy neutrinos from the blazar TXS 0506+056 are usually thought to arise from the relativistic jet pointing to us. However, the composition of jets of active galactic nuclei (AGNs), whether they are baryon dominated or Poynting flux dominated, is largely unknown. In the latter case, no comic rays and neutrinos would be expected from the AGN jets. In this work, we study whether the neutrino emission from TXS 0506+056 could be powered by the accretion flow of the supermassive black hole. Protons could be accelerated by magnetic reconnection or turbulence in the inner accretion flow. To explain the neutrino flare of TXS 0506+056 in the years 2014–2015, a super-Eddington accretion is needed. During the steady state, a sub-Eddington accretion flow could power a steady neutrino emission that may explain the long-term neutrino flux from TXS 0506+056. We consider the neutrino production in both magnetically arrested accretion (MAD) flow and the standard and normal evolution (SANE) regime of accretion. In the MAD scenario, due to a high magnetic field, a large dissipation radius is required to avoid the cooling of protons and secondary pions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信