PFOS causes lysosomes-regulated mitochondrial fission through TRPML1-VDAC1 and oligomerization of MCU/ATP5J2

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Wei Yang, Yu Li, Ruzhen Feng, Peiyao Liang, Kefan Tian, Lingli Hu, Kejing Wang, Tianming Qiu, Jingyuan Zhang, Xiance Sun, Xiaofeng Yao
{"title":"PFOS causes lysosomes-regulated mitochondrial fission through TRPML1-VDAC1 and oligomerization of MCU/ATP5J2","authors":"Wei Yang, Yu Li, Ruzhen Feng, Peiyao Liang, Kefan Tian, Lingli Hu, Kejing Wang, Tianming Qiu, Jingyuan Zhang, Xiance Sun, Xiaofeng Yao","doi":"10.1016/j.jhazmat.2025.137685","DOIUrl":null,"url":null,"abstract":"Perfluorooctane sulfonate (PFOS), a listed persistent organic pollutant, poses risks to human health and is closely linked to chronic metabolic diseases. Although the role of mitochondrial fission in these diseases has garnered attention, whether and how PFOS induces mitochondrial fission remains obscure. Here, we found that PFOS induced mitochondrial fission, as demonstrated by the fragmentation of mitochondria and the upregulation of dynamin-related protein 1 (DRP1), phospho-DRP1 and mitochondrial fission protein 1 (FIS1) in human hepatocytes MIHA and mice liver. Blocking the calcium transfer from lysosomes to mitochondria that was executed by transient receptor potential mucolipin 1 (TRPML1) of lysosomes and voltage-dependent anion channel 1 (VDAC1) of mitochondria, did not affect PFOS-induced mitochondrial fission. In contrast, knockdown of TRPML1 or VDAC1 reversed this process. Knockdown of mitochondrial calcium uniporter (MCU), rather than inhibiting its activity, effectively alleviated PFOS-induced mitochondrial fission. Additionally, PFOS increased MCU oligomers without affecting MCU monomer. Inhibiting autophagy reversed the MCU oligomerization. Further investigation unveiled the interactions of MCU with VDAC1, TRPML1, mitochondrial Fo complex subunit F2 (ATP5J2) and DRP1 in PFOS-exposed mice liver and MIHA cells. We also discovered that knockdown of ATP5J2 alleviated PFOS-induced mitochondrial fission. Ulteriorly, PFOS upregulated ATP5J2 that underwent oligomerization. Knockdown of MCU reversed the increase in ATP5J2. Our study uncovers the presence and molecular basics of lysosomes-regulated mitochondrial fission under PFOS exposure, explains the regulatory pathways on MCU and ATP5J2 oligomerization and their pivotal roles in mitochondrial fission, highlighting the involvement of mitochondrial fission in PFOS-related health risks.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"25 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137685","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorooctane sulfonate (PFOS), a listed persistent organic pollutant, poses risks to human health and is closely linked to chronic metabolic diseases. Although the role of mitochondrial fission in these diseases has garnered attention, whether and how PFOS induces mitochondrial fission remains obscure. Here, we found that PFOS induced mitochondrial fission, as demonstrated by the fragmentation of mitochondria and the upregulation of dynamin-related protein 1 (DRP1), phospho-DRP1 and mitochondrial fission protein 1 (FIS1) in human hepatocytes MIHA and mice liver. Blocking the calcium transfer from lysosomes to mitochondria that was executed by transient receptor potential mucolipin 1 (TRPML1) of lysosomes and voltage-dependent anion channel 1 (VDAC1) of mitochondria, did not affect PFOS-induced mitochondrial fission. In contrast, knockdown of TRPML1 or VDAC1 reversed this process. Knockdown of mitochondrial calcium uniporter (MCU), rather than inhibiting its activity, effectively alleviated PFOS-induced mitochondrial fission. Additionally, PFOS increased MCU oligomers without affecting MCU monomer. Inhibiting autophagy reversed the MCU oligomerization. Further investigation unveiled the interactions of MCU with VDAC1, TRPML1, mitochondrial Fo complex subunit F2 (ATP5J2) and DRP1 in PFOS-exposed mice liver and MIHA cells. We also discovered that knockdown of ATP5J2 alleviated PFOS-induced mitochondrial fission. Ulteriorly, PFOS upregulated ATP5J2 that underwent oligomerization. Knockdown of MCU reversed the increase in ATP5J2. Our study uncovers the presence and molecular basics of lysosomes-regulated mitochondrial fission under PFOS exposure, explains the regulatory pathways on MCU and ATP5J2 oligomerization and their pivotal roles in mitochondrial fission, highlighting the involvement of mitochondrial fission in PFOS-related health risks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信