Abelian varieties over finite fields and their groups of rational points

IF 0.9 1区 数学 Q2 MATHEMATICS
Stefano Marseglia, Caleb Springer
{"title":"Abelian varieties over finite fields and their groups of rational points","authors":"Stefano Marseglia, Caleb Springer","doi":"10.2140/ant.2025.19.521","DOIUrl":null,"url":null,"abstract":"<p>Over a finite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math>, abelian varieties with commutative endomorphism rings can be described by using modules over orders in étale algebras. By exploiting this connection, we produce four theorems regarding groups of rational points and self-duality, along with explicit examples. First, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math> is locally Gorenstein, we show that the group structure of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> is determined by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>. In fact, the same conclusion is attained if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math> has local Cohen–Macaulay type at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>, under the additional assumption that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is ordinary or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> is prime, although the conclusion is not true in general. Second, the description in the Gorenstein case is used to characterize cyclic isogeny classes in terms of conductor ideals. Third, going in the opposite direction, we characterize squarefree isogeny classes of abelian varieties with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> rational points in which every abelian group of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> is realized as a group of rational points. Finally, we study when an abelian variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math> and its dual <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math> satisfy or fail to satisfy several interrelated properties, namely <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mi>≅</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo><mi>≅</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo stretchy=\"false\">)</mo></math>. In the process, we exhibit a sufficient condition for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi>\n<mo>≇</mo> <msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math> involving the local Cohen–Macaulay type of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>. In particular, such an abelian variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is not a Jacobian, or even principally polarizable. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.521","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over a finite field 𝔽q, abelian varieties with commutative endomorphism rings can be described by using modules over orders in étale algebras. By exploiting this connection, we produce four theorems regarding groups of rational points and self-duality, along with explicit examples. First, when End (A) is locally Gorenstein, we show that the group structure of A(𝔽q) is determined by End (A). In fact, the same conclusion is attained if End (A) has local Cohen–Macaulay type at most 2, under the additional assumption that A is ordinary or q is prime, although the conclusion is not true in general. Second, the description in the Gorenstein case is used to characterize cyclic isogeny classes in terms of conductor ideals. Third, going in the opposite direction, we characterize squarefree isogeny classes of abelian varieties with N rational points in which every abelian group of order N is realized as a group of rational points. Finally, we study when an abelian variety A over 𝔽q and its dual A satisfy or fail to satisfy several interrelated properties, namely AA, A(𝔽q)A(𝔽q), and End (A) = End (A). In the process, we exhibit a sufficient condition for A A involving the local Cohen–Macaulay type of End (A). In particular, such an abelian variety A is not a Jacobian, or even principally polarizable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信