{"title":"Abelian varieties over finite fields and their groups of rational points","authors":"Stefano Marseglia, Caleb Springer","doi":"10.2140/ant.2025.19.521","DOIUrl":null,"url":null,"abstract":"<p>Over a finite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math>, abelian varieties with commutative endomorphism rings can be described by using modules over orders in étale algebras. By exploiting this connection, we produce four theorems regarding groups of rational points and self-duality, along with explicit examples. First, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math> is locally Gorenstein, we show that the group structure of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> is determined by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>. In fact, the same conclusion is attained if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math> has local Cohen–Macaulay type at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>, under the additional assumption that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is ordinary or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> is prime, although the conclusion is not true in general. Second, the description in the Gorenstein case is used to characterize cyclic isogeny classes in terms of conductor ideals. Third, going in the opposite direction, we characterize squarefree isogeny classes of abelian varieties with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> rational points in which every abelian group of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> is realized as a group of rational points. Finally, we study when an abelian variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math> and its dual <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math> satisfy or fail to satisfy several interrelated properties, namely <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup><mo stretchy=\"false\">)</mo></math>. In the process, we exhibit a sufficient condition for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi>\n<mo>≇</mo> <msup><mrow><mi>A</mi></mrow><mrow><mo>∨</mo></mrow></msup></math> involving the local Cohen–Macaulay type of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math>. In particular, such an abelian variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is not a Jacobian, or even principally polarizable. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.521","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Over a finite field , abelian varieties with commutative endomorphism rings can be described by using modules over orders in étale algebras. By exploiting this connection, we produce four theorems regarding groups of rational points and self-duality, along with explicit examples. First, when is locally Gorenstein, we show that the group structure of is determined by . In fact, the same conclusion is attained if has local Cohen–Macaulay type at most , under the additional assumption that is ordinary or is prime, although the conclusion is not true in general. Second, the description in the Gorenstein case is used to characterize cyclic isogeny classes in terms of conductor ideals. Third, going in the opposite direction, we characterize squarefree isogeny classes of abelian varieties with rational points in which every abelian group of order is realized as a group of rational points. Finally, we study when an abelian variety over and its dual satisfy or fail to satisfy several interrelated properties, namely , , and . In the process, we exhibit a sufficient condition for involving the local Cohen–Macaulay type of . In particular, such an abelian variety is not a Jacobian, or even principally polarizable.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.