Algebraic cycles and functorial lifts from G2 to PGSp6

IF 0.9 1区 数学 Q2 MATHEMATICS
Antonio Cauchi, Francesco Lemma, Joaquín Rodrigues Jacinto
{"title":"Algebraic cycles and functorial lifts from G2 to PGSp6","authors":"Antonio Cauchi, Francesco Lemma, Joaquín Rodrigues Jacinto","doi":"10.2140/ant.2025.19.551","DOIUrl":null,"url":null,"abstract":"<p>We study instances of Beilinson–Tate conjectures for automorphic representations of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> PGSp</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>6</mn></mrow></msub></math> whose spin <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-function has a pole at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi>\n<mo>=</mo> <mn>1</mn></math>. We construct algebraic cycles of codimension 3 in the Siegel–Shimura variety of dimension 6 and we relate its regulator to the residue at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi>\n<mo>=</mo> <mn>1</mn></math> of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-function of certain cuspidal forms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> PGSp</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>6</mn></mrow></msub></math>. Using the exceptional theta correspondence between the split group of type <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> PGSp</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>6</mn></mrow></msub></math> and assuming the nonvanishing of a certain archimedean integral, this allows us to confirm a conjecture of Gross and Savin on rank-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>7</mn></math> motives of type <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.551","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study instances of Beilinson–Tate conjectures for automorphic representations of PGSp 6 whose spin L-function has a pole at s = 1. We construct algebraic cycles of codimension 3 in the Siegel–Shimura variety of dimension 6 and we relate its regulator to the residue at s = 1 of the L-function of certain cuspidal forms of PGSp 6. Using the exceptional theta correspondence between the split group of type G2 and PGSp 6 and assuming the nonvanishing of a certain archimedean integral, this allows us to confirm a conjecture of Gross and Savin on rank-7 motives of type G2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信