Characterization of per- and polyfluoroalkyl substances (PFASs) in Chinese river and lake sediments

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Roberto Xavier Supe Tulcan, Christian Miguel Huarez Yarleque, Xiaoxia Lu, Gulijiazi Yeerkenbieke, Valeria Ochoa Herrera, Viraj Gunarathne, Gabriela Salome Yánez-Jácome
{"title":"Characterization of per- and polyfluoroalkyl substances (PFASs) in Chinese river and lake sediments","authors":"Roberto Xavier Supe Tulcan, Christian Miguel Huarez Yarleque, Xiaoxia Lu, Gulijiazi Yeerkenbieke, Valeria Ochoa Herrera, Viraj Gunarathne, Gabriela Salome Yánez-Jácome","doi":"10.1016/j.jhazmat.2025.137680","DOIUrl":null,"url":null,"abstract":"Sediment pollution by per- and polyfluoroalkyl substances (PFASs) is an emerging environmental concern with far-reaching implications, attracting considerable public, scientific and regulatory attention. This study analyzed 72 articles published since 2010 to assess the accumulation, sources, spatiotemporal trends, and contributing factors of PFAS pollution in surface sediments across China. The total concentrations of PFASs at the reviewed sites ranged from 0.001 to 10700<!-- --> <!-- -->ng/g, with the maximum concentration detected in the Xiaoqing River, Shandong province. Excluding the Xiaoqing River, the mean total PFAS concentrations at other sites were below 200<!-- --> <!-- -->ng/g. Although long-chain PFASs have been frequently associated with sediment phases due to their hydrophobicity, short-chain legacy and emerging PFASs also exhibited high concentrations, often being the dominant analytes at several sites because of their significant partition coefficients in sediments of China. Fluorochemical industries were identified as the most significant contributors to sediment PFAS accumulation, with concentrations up to ten times higher than those in areas affected by other sources. Risk assessments revealed differing outcomes based on chronic and acute toxicological data. Acute data indicated high ecological risks to aquatic organisms—including daphnids, green algae, mysids, and fish—from long-chain PFCAs and PFOS exposure at up to 19 sites. In contrast, chronic data derived from SSD for PFOS and PFOA, considering the maximum concentrations found across sites, suggested high chronic risks at only 1 and 4 sites, respectively. These findings, combined with the widespread occurrence of fluorochemical industries and the adsorption and bioaccumulative behavior of legacy and emerging PFASs in sediments, underscore the need for expanded assessments in underrepresented regions of China to comprehensively evaluate ecological and human health risks.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"2 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137680","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sediment pollution by per- and polyfluoroalkyl substances (PFASs) is an emerging environmental concern with far-reaching implications, attracting considerable public, scientific and regulatory attention. This study analyzed 72 articles published since 2010 to assess the accumulation, sources, spatiotemporal trends, and contributing factors of PFAS pollution in surface sediments across China. The total concentrations of PFASs at the reviewed sites ranged from 0.001 to 10700 ng/g, with the maximum concentration detected in the Xiaoqing River, Shandong province. Excluding the Xiaoqing River, the mean total PFAS concentrations at other sites were below 200 ng/g. Although long-chain PFASs have been frequently associated with sediment phases due to their hydrophobicity, short-chain legacy and emerging PFASs also exhibited high concentrations, often being the dominant analytes at several sites because of their significant partition coefficients in sediments of China. Fluorochemical industries were identified as the most significant contributors to sediment PFAS accumulation, with concentrations up to ten times higher than those in areas affected by other sources. Risk assessments revealed differing outcomes based on chronic and acute toxicological data. Acute data indicated high ecological risks to aquatic organisms—including daphnids, green algae, mysids, and fish—from long-chain PFCAs and PFOS exposure at up to 19 sites. In contrast, chronic data derived from SSD for PFOS and PFOA, considering the maximum concentrations found across sites, suggested high chronic risks at only 1 and 4 sites, respectively. These findings, combined with the widespread occurrence of fluorochemical industries and the adsorption and bioaccumulative behavior of legacy and emerging PFASs in sediments, underscore the need for expanded assessments in underrepresented regions of China to comprehensively evaluate ecological and human health risks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信