Shuhan Li, Yu Liu, Yi Zhang, Pan Huang, Mark Bartlam, Yingying Wang
{"title":"Stereoselective Behavior of Naproxen Chiral Enantiomers in Promoting Horizontal Transfer of Antibiotic Resistance Genes","authors":"Shuhan Li, Yu Liu, Yi Zhang, Pan Huang, Mark Bartlam, Yingying Wang","doi":"10.1016/j.jhazmat.2025.137692","DOIUrl":null,"url":null,"abstract":"Antibiotic resistance poses a global threat to public health, with recent studies highlighting the role of non-antibiotic pharmaceuticals in the transmission of Antibiotic resistance genes (ARGs). This study provides insights into the comprehensive profile, horizontal gene transfer potential, hosts, and public health risks associated with antibiotic resistomes in river ecosystems exposed to chiral naproxen (NAP). Our findings demonstrate that NAP stress selectively enriches ARGs and mobile genetic elements (MGEs), thereby bolstering bacterial resistance to specific antibiotics. Importantly, the spatial variation of NAP chiral enantiomers influences the enantioselective response of bacterial communities to antibiotics. While (S)-NAP and (R)-NAP exhibit differing degrees of horizontal transfer potential, (S/R)-NAP notably facilitates microbial aggregation and DNA transport via type IV secretion system (T4SS)-related functional genes, promoting the conjugation of <em>sul1</em>. Moreover, (S/R)-NAP promotes the horizontal transfer of ARGs by stimulating ROS production and altering cell membrane permeability. Chiral NAP exposure induces pathogens to acquire ARGs and accelerates the proliferation of <em>Burkholderia</em>. ARG-Rank analysis indicates that the health risk posed by (R)-NAP exposure surpasses that of (S)-NAP, with the highest risk observed when both enantiomers are present. This study elucidates the horizontal transfer and transmission mechanisms of ARGs under chiral NAP stress, underscoring the potential health hazards associated with NAP chiral enantiomers.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"15 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137692","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance poses a global threat to public health, with recent studies highlighting the role of non-antibiotic pharmaceuticals in the transmission of Antibiotic resistance genes (ARGs). This study provides insights into the comprehensive profile, horizontal gene transfer potential, hosts, and public health risks associated with antibiotic resistomes in river ecosystems exposed to chiral naproxen (NAP). Our findings demonstrate that NAP stress selectively enriches ARGs and mobile genetic elements (MGEs), thereby bolstering bacterial resistance to specific antibiotics. Importantly, the spatial variation of NAP chiral enantiomers influences the enantioselective response of bacterial communities to antibiotics. While (S)-NAP and (R)-NAP exhibit differing degrees of horizontal transfer potential, (S/R)-NAP notably facilitates microbial aggregation and DNA transport via type IV secretion system (T4SS)-related functional genes, promoting the conjugation of sul1. Moreover, (S/R)-NAP promotes the horizontal transfer of ARGs by stimulating ROS production and altering cell membrane permeability. Chiral NAP exposure induces pathogens to acquire ARGs and accelerates the proliferation of Burkholderia. ARG-Rank analysis indicates that the health risk posed by (R)-NAP exposure surpasses that of (S)-NAP, with the highest risk observed when both enantiomers are present. This study elucidates the horizontal transfer and transmission mechanisms of ARGs under chiral NAP stress, underscoring the potential health hazards associated with NAP chiral enantiomers.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.