{"title":"Vacancies and sea urchin structure protect cobalt manganese spinel from anion poisoning in peroxymonosulfate activation","authors":"Hui Jia, Rumeng Liu, Tenglong Huang, Fulin Wang, Shanshan Dong, Huihui Dai, Zhenxing Zeng, Dingding Tang, Xiaodong Wang, Suhua Chen","doi":"10.1038/s41545-025-00444-8","DOIUrl":null,"url":null,"abstract":"<p>Peroxymonosulfate (PMS) activation by cobalt manganese spinel (Co-Mn) is always unsatisfactory due to the interference of co-existing anions in water. In this study, we used a sulfate-modification strategy to prepare a sea urchin-like Co-Mn catalyst (CoMn<sub>2</sub>O<sub>4</sub>-S) with abundant oxygen vacancies for counteracting the interference of anions in pollutant degradation. Compared with the conventional Co-Mn catalyst (CoMn<sub>2</sub>O<sub>4</sub>), CoMn<sub>2</sub>O<sub>4</sub>-S exhibited higher resistance to poisoning of NO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, and SO<sub>4</sub><sup>2−</sup> in PMS activation involved phenol degradation. Additionally, H<sub>2</sub>PO<sub>4</sub><sup>−</sup> could even enhance phenol degradation by 150.2% for CoMn<sub>2</sub>O<sub>4</sub>-S/PMS system, in contrast to its induced 18.5% inhibition to CoMn<sub>2</sub>O<sub>4</sub>/PMS system. It was demonstrated that vacancies and sea urchin structure alleviated catalyst agglomeration for preserving catalytic sites and promoted catalyst surface modulation for radical diffusion, contributing to the enhanced stability in saline water. This work provides a facile strategy for overcoming the negative effects of co-existing anions on heterogeneous PMS-activation based water treatment.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"19 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00444-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxymonosulfate (PMS) activation by cobalt manganese spinel (Co-Mn) is always unsatisfactory due to the interference of co-existing anions in water. In this study, we used a sulfate-modification strategy to prepare a sea urchin-like Co-Mn catalyst (CoMn2O4-S) with abundant oxygen vacancies for counteracting the interference of anions in pollutant degradation. Compared with the conventional Co-Mn catalyst (CoMn2O4), CoMn2O4-S exhibited higher resistance to poisoning of NO3−, Cl−, and SO42− in PMS activation involved phenol degradation. Additionally, H2PO4− could even enhance phenol degradation by 150.2% for CoMn2O4-S/PMS system, in contrast to its induced 18.5% inhibition to CoMn2O4/PMS system. It was demonstrated that vacancies and sea urchin structure alleviated catalyst agglomeration for preserving catalytic sites and promoted catalyst surface modulation for radical diffusion, contributing to the enhanced stability in saline water. This work provides a facile strategy for overcoming the negative effects of co-existing anions on heterogeneous PMS-activation based water treatment.
由于水中共存阴离子的干扰,钴锰尖晶石(Co-Mn)活化过氧单硫酸盐(PMS)的效果往往不理想。在本研究中,我们采用硫酸盐改性策略制备了一种具有丰富氧空位的海胆样Co-Mn催化剂(CoMn2O4-S),以抵消阴离子对污染物降解的干扰。与传统Co-Mn催化剂(CoMn2O4)相比,CoMn2O4- s在PMS活化过程中对NO3−、Cl−和SO42−具有更高的抗性。此外,H2PO4−对CoMn2O4- s /PMS体系的苯酚降解率提高了150.2%,而对CoMn2O4/PMS体系的抑制率为18.5%。结果表明,空位和海胆结构减轻了催化剂团聚以保留催化位点,促进了催化剂表面调节以促进自由基扩散,从而提高了催化剂在盐水中的稳定性。这项工作为克服共存阴离子对非均相pms活化水处理的负面影响提供了一种简便的策略。
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.