Geometry of the Comptonization Region of MAXI J1348−630 through Type-C Quasiperiodic Oscillations with NICER

Kevin Alabarta, Mariano Méndez, Federico García, Diego Altamirano, Yuexin Zhang, Liang Zhang, David M. Russell and Ole König
{"title":"Geometry of the Comptonization Region of MAXI J1348−630 through Type-C Quasiperiodic Oscillations with NICER","authors":"Kevin Alabarta, Mariano Méndez, Federico García, Diego Altamirano, Yuexin Zhang, Liang Zhang, David M. Russell and Ole König","doi":"10.3847/1538-4357/ada7f9","DOIUrl":null,"url":null,"abstract":"We use the rms and lag spectra of the type-C quasiperiodic oscillation (QPO) to study the properties of the Comptonization region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348−630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Comptonization model VKOMPTH. The data can be explained by two physically connected coronae interacting with the accretion disk via a feedback loop of X-ray photons. The best-fitting model consists of a corona of ∼103 km located at the inner edge of the disk and a second corona of ∼104 km horizontally extended and covering the inner parts of the accretion disk. The properties of both coronae during the reflare are similar to those during the low/hard state of the main outburst, reinforcing the idea that both the outburst and the reflare are driven by the same physical mechanisms. We combine our results for the type-C QPO with those from previous work focused on the study of type-A and type-B QPOs with the same model to study the evolution of the geometry of the corona through the whole outburst, including the reflare of MAXI J1348−630. Finally, we show that the sudden increase in the phase-lag frequency spectrum and the sharp drop in the coherence function previously observed in MAXI J1348−630 are due to the type-C QPO during the decay of the outburst and can be explained in terms of the geometry of the coronae.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada7f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use the rms and lag spectra of the type-C quasiperiodic oscillation (QPO) to study the properties of the Comptonization region (aka corona) during the low/hard and hard-intermediate states of the main outburst and reflare of MAXI J1348−630. We simultaneously fit the time-averaged energy spectrum of the source and the fractional rms and phase-lag spectra of the QPO with the time-dependent Comptonization model VKOMPTH. The data can be explained by two physically connected coronae interacting with the accretion disk via a feedback loop of X-ray photons. The best-fitting model consists of a corona of ∼103 km located at the inner edge of the disk and a second corona of ∼104 km horizontally extended and covering the inner parts of the accretion disk. The properties of both coronae during the reflare are similar to those during the low/hard state of the main outburst, reinforcing the idea that both the outburst and the reflare are driven by the same physical mechanisms. We combine our results for the type-C QPO with those from previous work focused on the study of type-A and type-B QPOs with the same model to study the evolution of the geometry of the corona through the whole outburst, including the reflare of MAXI J1348−630. Finally, we show that the sudden increase in the phase-lag frequency spectrum and the sharp drop in the coherence function previously observed in MAXI J1348−630 are due to the type-C QPO during the decay of the outburst and can be explained in terms of the geometry of the coronae.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信