Fast and Efficient Bayesian Method to Search for Strongly Lensed Gravitational Waves

Ankur Barsode, Srashti Goyal and Parameswaran Ajith
{"title":"Fast and Efficient Bayesian Method to Search for Strongly Lensed Gravitational Waves","authors":"Ankur Barsode, Srashti Goyal and Parameswaran Ajith","doi":"10.3847/1538-4357/adae10","DOIUrl":null,"url":null,"abstract":"A small fraction of the gravitational-wave (GW) signals from binary black holes observable by ground-based detectors will be strongly lensed by intervening objects such as galaxies and clusters. Strong lensing will produce nearly identical copies of the GW signals separated in time. These lensed signals must be identified against a background of unlensed pairs GW events, some of which may appear similar by accident. This is usually done using fast, but approximate methods that, for example, check for the overlap between the posterior distributions of a subset of binary parameters, or using slow, but accurate joint Bayesian parameter estimation. In this work, we present a modified version of the posterior overlap method dubbed “PO2.0” that is mathematically equivalent to joint parameter estimation while still remaining fast. We achieve a significant gain in efficiency by incorporating informative priors about the binary and lensing populations, selection effects, and all the inferred parameters of the binary. For binary black hole signals lensed by galaxies, our improved method can detect 65% lensed events at a pairwise false alarm probability of ∼2 × 10−6. Consequently, we have a 13% probability of detecting a strongly lensed event above 2.25σ significance during 18 months of observation by the LIGO-Virgo detectors at their current sensitivity. We also show how we can compute the joint posteriors of the lens and source parameters from a pair of lensed events by reweighting the posteriors of individual events in a computationally inexpensive way.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adae10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A small fraction of the gravitational-wave (GW) signals from binary black holes observable by ground-based detectors will be strongly lensed by intervening objects such as galaxies and clusters. Strong lensing will produce nearly identical copies of the GW signals separated in time. These lensed signals must be identified against a background of unlensed pairs GW events, some of which may appear similar by accident. This is usually done using fast, but approximate methods that, for example, check for the overlap between the posterior distributions of a subset of binary parameters, or using slow, but accurate joint Bayesian parameter estimation. In this work, we present a modified version of the posterior overlap method dubbed “PO2.0” that is mathematically equivalent to joint parameter estimation while still remaining fast. We achieve a significant gain in efficiency by incorporating informative priors about the binary and lensing populations, selection effects, and all the inferred parameters of the binary. For binary black hole signals lensed by galaxies, our improved method can detect 65% lensed events at a pairwise false alarm probability of ∼2 × 10−6. Consequently, we have a 13% probability of detecting a strongly lensed event above 2.25σ significance during 18 months of observation by the LIGO-Virgo detectors at their current sensitivity. We also show how we can compute the joint posteriors of the lens and source parameters from a pair of lensed events by reweighting the posteriors of individual events in a computationally inexpensive way.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信