Gravitational wave forms for extreme mass ratio collisions from supersymmetric gauge theories

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Francesco Fucito, Jose Francisco Morales, Rodolfo Russo
{"title":"Gravitational wave forms for extreme mass ratio collisions from supersymmetric gauge theories","authors":"Francesco Fucito, Jose Francisco Morales, Rodolfo Russo","doi":"10.1103/physrevd.111.044054","DOIUrl":null,"url":null,"abstract":"We study the wave form emitted by a particle moving along an arbitrary (in general open) geodesic of the Schwarzschild geometry. The mathematical problem can be phrased in terms of quantities in N</a:mi>=</a:mo>2</a:mn></a:math> supersymmetric gauge theories that can be calculated by using localization and the Alday-Gaiotto-Tachikawa correspondence. In particular through this mapping, the post-Newtonian expansion of the wave form is expressed as a double instanton sum with rational coefficients that resums all tail contributions into Gamma functions and exponentials. The formulas we obtain are valid for generic values of the orbital quantum numbers <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mo>ℓ</d:mo></d:math> and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi>m</f:mi></f:math>. For <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mo>ℓ</h:mo><h:mo>=</h:mo><h:mn>2</h:mn></h:math>, 3 we check explicitly that our results agree with the small mass ratio limit of the wave forms derived in the multipole post-Minkowskian and the amplitudes approaches. We show how the so-called tails and tails-of-tails contributions to the wave form arise in our approach. Finally, we derive a universal formula for the soft limit of the wave form that resums all logarithmic terms of the form <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msup><j:mi>ω</j:mi><j:mrow><j:mi>n</j:mi><j:mo>−</j:mo><j:mn>1</j:mn></j:mrow></j:msup><j:mo stretchy=\"false\">(</j:mo><j:mi>log</j:mi><j:mi>ω</j:mi><j:msup><j:mo stretchy=\"false\">)</j:mo><j:mi>n</j:mi></j:msup></j:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"139 9 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.044054","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study the wave form emitted by a particle moving along an arbitrary (in general open) geodesic of the Schwarzschild geometry. The mathematical problem can be phrased in terms of quantities in N=2 supersymmetric gauge theories that can be calculated by using localization and the Alday-Gaiotto-Tachikawa correspondence. In particular through this mapping, the post-Newtonian expansion of the wave form is expressed as a double instanton sum with rational coefficients that resums all tail contributions into Gamma functions and exponentials. The formulas we obtain are valid for generic values of the orbital quantum numbers and m. For =2, 3 we check explicitly that our results agree with the small mass ratio limit of the wave forms derived in the multipole post-Minkowskian and the amplitudes approaches. We show how the so-called tails and tails-of-tails contributions to the wave form arise in our approach. Finally, we derive a universal formula for the soft limit of the wave form that resums all logarithmic terms of the form ωn1(logω)n. Published by the American Physical Society 2025
来自超对称规范理论的极端质量比碰撞引力波形式
我们研究了沿任意(一般开放)史瓦西几何测地线运动的粒子所发出的波形。数学问题可以用N=2超对称规范理论中的量来表达,这些理论可以通过局域化和Alday-Gaiotto-Tachikawa对应来计算。特别是通过这种映射,波形的后牛顿扩展被表示为具有有理系数的双瞬时和,它将所有尾贡献恢复为Gamma函数和指数。对于轨道量子数的一般值,我们得到的公式是有效的。对于r = 2,3,我们明确地验证了我们的结果与在多极后闵可夫斯基量和振幅方法中导出的波形的小质量比极限一致。我们展示了所谓的尾和尾尾对波形的贡献是如何在我们的方法中出现的。最后,我们导出了波形软极限的一个通用公式,它恢复了ωn−1(logω)n形式的所有对数项。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信