Maximal steady-state entanglement in autonomous quantum thermal machines

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Shishir Khandelwal, Björn Annby-Andersson, Giovanni Francesco Diotallevi, Andreas Wacker, Armin Tavakoli
{"title":"Maximal steady-state entanglement in autonomous quantum thermal machines","authors":"Shishir Khandelwal, Björn Annby-Andersson, Giovanni Francesco Diotallevi, Andreas Wacker, Armin Tavakoli","doi":"10.1038/s41534-025-00981-7","DOIUrl":null,"url":null,"abstract":"<p>We devise an autonomous quantum thermal machine consisting of three pairwise-interacting qubits, two of which are locally coupled to thermal reservoirs. The machine operates autonomously, as it requires no time-coherent control, external driving or quantum bath engineering, and is instead propelled by a chemical potential bias. Under ideal conditions, we show that this out-of-equilibrium system can deterministically generate a maximally entangled steady-state between two of the qubits, or any desired pure two-qubit entangled state, emerging as a dark state of the system. We study the robustness of entanglement production with respect to several relevant parameters, obtaining nearly-maximally-entangled states well-away from the ideal regime of operation. Furthermore, we show that our machine architecture can be generalised to a configuration with 2<i>n</i> − 1 qubits, in which only a potential bias and two-body interactions are sufficient to generate genuine multipartite maximally entangled steady states in the form of a W state of <i>n</i> qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"49 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00981-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We devise an autonomous quantum thermal machine consisting of three pairwise-interacting qubits, two of which are locally coupled to thermal reservoirs. The machine operates autonomously, as it requires no time-coherent control, external driving or quantum bath engineering, and is instead propelled by a chemical potential bias. Under ideal conditions, we show that this out-of-equilibrium system can deterministically generate a maximally entangled steady-state between two of the qubits, or any desired pure two-qubit entangled state, emerging as a dark state of the system. We study the robustness of entanglement production with respect to several relevant parameters, obtaining nearly-maximally-entangled states well-away from the ideal regime of operation. Furthermore, we show that our machine architecture can be generalised to a configuration with 2n − 1 qubits, in which only a potential bias and two-body interactions are sufficient to generate genuine multipartite maximally entangled steady states in the form of a W state of n qubits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信