Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake.

Takanori Hayashi, Kanako Kumamoto, Tatsuya Kobayashi, Xinfeng Hou, Shizuko Nagao, Nobuhiro Harada, Shinichiro Honda, Yohei Shimono, Eiji Nishio
{"title":"Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake.","authors":"Takanori Hayashi, Kanako Kumamoto, Tatsuya Kobayashi, Xinfeng Hou, Shizuko Nagao, Nobuhiro Harada, Shinichiro Honda, Yohei Shimono, Eiji Nishio","doi":"10.1111/febs.17426","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen is synthesized throughout various tissues in the body, and its production is regulated by the rate-limiting enzyme aromatase (encoded by the Cyp19a1 gene). Notably, aromatase is also expressed in central nervous system cells, allowing for localized estrogen synthesis in regions such as the hypothalamus. Estrogens produced within these neurons are referred to as neuroestrogens. In this study, we investigated the role of neuroestrogens in the regulation of appetite through modulation of hypothalamic pathways in OVX, ArKO, and aromatase-restored mice. Estrogen suppresses appetite by influencing the expression of appetite-regulating peptides, including POMC and NPY, via MC4R. We explored the direct effects of neuroestrogens, independent from ovarian estrogen, on appetite suppression and the underlying molecular mechanisms. We monitored body weight and food intake and evaluated the expression of Cyp19a1, Mc4r, and other appetite-related genes. Our findings indicate that OVX and ArKO mice exhibited increased body weight and food consumption, which correlated with altered expression of Mc4r and Cyp19a1. Conversely, restoration of Cyp19a1 expression in a neuron specific manner significantly decreased food intake and increased Mc4r expression in the hypothalamus. Furthermore, neuroestrogens enhanced leptin responsiveness. Our results imply that neuroestrogens likely contribute to appetite regulation and may be relevant for body weight reduction.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estrogen is synthesized throughout various tissues in the body, and its production is regulated by the rate-limiting enzyme aromatase (encoded by the Cyp19a1 gene). Notably, aromatase is also expressed in central nervous system cells, allowing for localized estrogen synthesis in regions such as the hypothalamus. Estrogens produced within these neurons are referred to as neuroestrogens. In this study, we investigated the role of neuroestrogens in the regulation of appetite through modulation of hypothalamic pathways in OVX, ArKO, and aromatase-restored mice. Estrogen suppresses appetite by influencing the expression of appetite-regulating peptides, including POMC and NPY, via MC4R. We explored the direct effects of neuroestrogens, independent from ovarian estrogen, on appetite suppression and the underlying molecular mechanisms. We monitored body weight and food intake and evaluated the expression of Cyp19a1, Mc4r, and other appetite-related genes. Our findings indicate that OVX and ArKO mice exhibited increased body weight and food consumption, which correlated with altered expression of Mc4r and Cyp19a1. Conversely, restoration of Cyp19a1 expression in a neuron specific manner significantly decreased food intake and increased Mc4r expression in the hypothalamus. Furthermore, neuroestrogens enhanced leptin responsiveness. Our results imply that neuroestrogens likely contribute to appetite regulation and may be relevant for body weight reduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信